Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-y^2+2x-4y-10=0\)\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)\(\Leftrightarrow\left[\left(x+1\right)-\left(y+2\right)\right]\left[\left(x+1\right)+\left(y+2\right)\right]=7\)\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7.\)
Mà x, y nguyên dương nên x - y - 1 và x + y + 3 nguyên => x - y - 1 và x + y + 3 là ước nguyên của 7. Do đó ta có bảng sau:
x - y - 1 | 1 | -1 | 7 | -7 |
x + y + 3 | 7 | -7 | 1 | -1 |
x - y | 2 | 0 | 8 | -6 |
x + y | 4 | -10 | -2 | -4 |
x | 3 | -5 | 3 | -5 |
y | 1 | -5 | -5 | 1 |
Kết luận | thoả mãn | x, y < 0 (loại) | y < 0 (loại) | x < 0 (loại) |
Vậy với x = 3, y = 1 thì thoả mãn \(x^2-y^2+2x-4y-10=0.\)
Bài 1:Ta có x + y = 10 và xy=24 nên
(x+y) - 4xy = 102 - 4*24
hay x2 +y2 -2xy = 100-96
nên (x-y)2 =4
Từ đó ta có x - y = -2 hoặc x - y = 2
Nếu x - y =2 và x+y=10 thì ta được x = 6; y=4
Nếu x - y = -2 va x+y=10 thì ta được x = 4; y=6
Bài 2
Ta có: x2 + y2 - 2x + 4y + 5 = 0
hay x2 - 2x +1 + y2 +4y +4=0
nên (x-1)2 + (y+2)2 =0
mà (x-1)2 >=0; (y+2)2 >=0
Từ đó suy ra được x=1; y=-2
x2+4y2-2x+4y+2=0
<=>x2-2x+1+4y2+4y+1=0
<=>(x-1)2+(2y+1)2=0
<=>x-1=0 và 2y+1=0
<=>x=1 và y=-1/2
a) x2 + y2 + 2x - 4y + 5 = 0
<=> ( x2 + 2x +1 ) + ( y2 - 4y + 4 ) = 0
<=> ( x + 1 )2 + ( y - 2 ) 2 = 0
<=> \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
b) x2 + 4y2 - x + 4y + \(\frac{5}{4}\)=0
<=> ( x2 - 2x + \(\frac{1}{4}\)) + ( 4y2 + 4y + 1 ) = 0
<=> ( x - \(\frac{1}{2}\))2 + ( 2y + 1 )2 = 0
<=> \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\2y+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\2y=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-1}{2}\end{cases}}\)
1.x² + y² - 4x - 2y + 5 = 0 ⇔ x² + y² - 4x - 2y + 4 + 1 = 0
⇔ (x² - 4x + 4) + (y² - 2y + 1) = 0 ⇔ (x - 2)² + (y - 1)² = 0
Do (x - 2)² ≥ 0 và (y - 1)² ≥ 0 nên (x - 2)² + (y - 1)² ≥ 0. Dấu '=' xảy ra ⇔
(x - 2)² = 0 và (y - 1)² = 0 ⇔ x - 2 = 0 và y - 1 = 0 ⇔ x = 2 và y = 1
2. có x^2 + 4xy + 4y^2 -2(x+2y) + 10
= (x+2y)^2 - 2(x+2y) +10
= 5^2 - 2x5 +10
= 25