K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2015

Bài 1:Ta có x + y = 10 và xy=24 nên

(x+y) - 4xy = 102 - 4*24

hay x2 +y2 -2xy = 100-96

nên (x-y)=4

Từ đó ta có x - y = -2 hoặc x - y = 2

Nếu x - y =2 và x+y=10 thì ta được x = 6; y=4

Nếu x - y = -2 va x+y=10 thì ta được x = 4; y=6

Bài 2

Ta có: x+ y- 2x + 4y + 5 = 0

hay x2 - 2x +1 + y2 +4y +4=0

nên (x-1)2 + (y+2)2 =0

mà (x-1)2 >=0; (y+2)>=0

Từ đó suy ra được x=1; y=-2

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

19 tháng 8 2020

Bài 1: 

a) (x+y)2=92=81

=> x2+2xy+y2=81

=> x2+2.14+y2=81

=> x2+y2=53

=> x2-2xy+y2=81-2.14=25

=> (x-y)2=25

=> x-y=5 hoặc x-y=-5

b) Câu a đã tính được x2+y2=53

c) Ta có: x3+y3=(x+y)(x2-xy+y2)=9(53-14)=9.39=351

Bài 2: 

Ta có: \(x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1\)

Mà x+y=1

\(\Rightarrow1^2-4.1+1=-2\)

Bài 3: 

Ta có: (x+y)3=x3+3x2y+3xy2+y3 

= x3+y3+3xy(x+y)

Mà x+y=1 => (x+y)3=x3+y3+3xy=13=1

Bài 4: 

Ta có: \(\left(x+y\right)^2=4^2=16\)

\(\Rightarrow x^2+2xy+y^2=16\Rightarrow10+2xy=16\)

\(\Rightarrow2xy=6\Rightarrow xy=3\)

Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4.\left(10-3\right)\)

\(=4.7=28\)

Bài 5: 

Ta có: \(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=1\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)

\(=x^2-2xy+y^2=\left(x-y\right)^2=1\)

Mấy bài này đầu hè làm hết rồi:))

19 tháng 8 2020

Bài 1:

a) \(xy=14\Rightarrow x=\frac{14}{y}\)

Thay vào: \(\frac{14}{y}+y=9\)

\(\Leftrightarrow y^2+14-9y=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=7\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}\)

+ Nếu: \(\hept{\begin{cases}x=7\\y=2\end{cases}}\Rightarrow x-y=5\)

+ Nếu: \(\hept{\begin{cases}x=2\\y=7\end{cases}}\Rightarrow x-y=-5\)

b) Ta có: \(x+y=9\)

\(\Leftrightarrow\left(x+y\right)^2=81\)

\(\Leftrightarrow x^2+2xy+y^2=81\)

\(\Rightarrow x^2+y^2=81-2xy=81-2.14=53\)

c) Ta có: \(x+y=9\)

\(\Leftrightarrow\left(x+y\right)^3=9^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=729\)

\(\Leftrightarrow x^3+y^3=729-3xy\left(x+y\right)=729-3.14.9=351\)

12 tháng 7 2018

f, x2+y2-2x+6y+10=0

<=>(x2-2x+1)+(y2+6y+9)=0

<=>(x-1)2+(y+3)2=0

Mà \(\left(x-1\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

g, x2+y2+1=xy+x+y

<=>2(x2+y2+1)=2(xy+x+y)

<=>2x2+2y2+2=2xy+2x+2y

<=>2x2+2y2+2-2xy-2x-2y=0

<=>(x2-2xy+y2)+(x2-2x+1)+(y2-2y+1)=0

<=>(x-y)2+(x-1)2+(y-1)2=0

Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\x=1\\y=1\end{cases}\Rightarrow}x=y=1}\)

h, 5x2-2x(2+y)+y2+1=0

<=>5x2-4x-2xy+y2+1=0

<=>(4x2-4x+1)+(x2-2xy+y2)=0

<=>(2x-1)2+(x-y)2=0

Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\\left(x-y\right)^2\ge0\end{cases}\Rightarrow\left(2x-1\right)^2+\left(x-y\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(x-y\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=y\end{cases}\Rightarrow}x=y=\frac{1}{2}}\)

f,x=1

y=-3

19 tháng 8 2016

1.x² + y² - 4x - 2y + 5 = 0 ⇔ x² + y² - 4x - 2y + 4 + 1 = 0 

⇔ (x² - 4x + 4) + (y² - 2y + 1) = 0 ⇔ (x - 2)² + (y - 1)² = 0 

Do (x - 2)² ≥ 0 và (y - 1)² ≥ 0 nên (x - 2)² + (y - 1)² ≥ 0. Dấu '=' xảy ra ⇔ 

(x - 2)² = 0 và (y - 1)² = 0 ⇔ x - 2 = 0 và y - 1 = 0 ⇔ x = 2 và y = 1 

2. có x^2 + 4xy + 4y^2 -2(x+2y) + 10

= (x+2y)^2 - 2(x+2y) +10

= 5^2 - 2x5 +10

= 25

10 tháng 7 2018

a ) 

\(A=x\left(x^3+y\right)-x^2\left(x^2-y\right)-x^2\left(y-1\right)\)

\(\Rightarrow A=x^4+xy-x^4+x^2y-x^2y+x^2\)

\(\Rightarrow A=x^2+xy=x\left(x+y\right)\)

Thay \(x=-10;y=5\)vào A , ta được : 

\(A=-10\left(-10+5\right)\)

\(=-10.-5=50\)

Vậy \(A=50\)

10 tháng 7 2018

a) A = x(x3 + y) - x2(x2 - y) - x2(y - 1)

= x4 + xy - x4 + x2y - x2y + x2

= xy + x2

Thay x = –10 và y = 5 vào (1), ta được:

A = -10.5 + (-10)2 = -50 + 100 = 50

Vậy giá trị của biểu thức A tại x = –10 và y = 5 là 50.

b)Ta có: 5x3 – 3x2 + 10x – 6 = (5x3 + 10x )+ ( -3x2– 6)

= 5x(x2 + 2) – 3(x2 + 2) = (x2 + 2)(5x – 3)

Vậy (x2 + 2)(5x – 3) = 0 ⇒ 5x – 3 = 0 (vì x2 + 2 ≥ 0, với mọi x)

⇒x = 3/5

c)Ta có: x2 + y2 – 2x + 4y + 5 = (x2 – 2x + 1) + (y2 + 4y + 4)

= (x – 1)2 + (y + 2)2

Vậy (x – 1)+ (y + 2)2 = 0 ⇒ x – 1 = 0 hay y + 2 = 0

⇒ x = 1 hoặc y = -2

26 tháng 11 2017

Bài 1: 

x3+y3=152=> (x+y)(x2-xy+y2)=152

 Mà x2-xy+y2=19

=> 19(x+y)=152=> x+y=8

Ta cũng có x-y=2

=> x=5;y=3

Bài 2: 

x2+4y2+z2=2x+12y-4z-14

=> x2+4y2+z2-2x-12y+4z+14=0

=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0

=> (x+1)2+(2y-3)2+(z+2)2=0

=> (x+1)2=(2y-3)2=(z+2)2=0

=> x=-1;y=3/2;z=-2

Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)