Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đa thức:
P(x) = x17 - 2000.x16 + 2000.x15 - 2000.x14 + .... + 2000.x - 1
Tính giá trị của P(1999).
a, \(27< 3^x< 3\cdot81\)
=> \(3^3< 3^x< 3\cdot3^4\)
=> \(3^3< 3^x< 3^5\)
=> x = 4
b, \(4^{15}\cdot9^{15}< 2^x\cdot3^x< 18^{16}\cdot216\)
=> \(\left[2^2\right]^{15}\cdot\left[3^2\right]^{15}< 2^x\cdot3^x< \left[2\cdot3^2\right]^{16}\cdot6^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{16}\cdot3^{32}\cdot2^3\cdot3^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{19}\cdot3^{35}\)
Đến đây tìm được x
\(c,2^{x+1}\cdot3^y=2^{2x}\cdot3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\Leftrightarrow x=1\)
\(d,6^x:2^{2000}=3^y\)
=> \(\frac{6^x}{3^y}=2^{2000}\)
=> \(\frac{3^{2x}}{3^y}=2^{2000}\)
=> \(3^{2x-y}=2^{2000}\)
Đến đây tìm thử x,y
a) 72000 = (74)x(74)x..x(74) ( có 500 thừa số 74)
= (...1)x(...1)x....x(...1) = (...1)
=> chữ số tận cùng của 72000 là 1
b) 91999 x 19990 = 91999x1 = 91999 = (92)x(92)x...x(92)x9 ( có 99 số 92)
= (...1)x(...1)x...x(...1)x 9 = 9
=> chữ số tận cùng của 91999x19990 là 9
c) xl bn nha! mk ko bk lm câu c
Thay \(x=2003\) vào A ta có:\(A=2003^{17}-2004.2003^{16}+2004.2003^{15}-2004.2003^{14}+...+2004.\left(2003-1\right)\)
\(=2003^{17}-\left(2003+1\right).2003^{16}+\left(2003+1\right).2003^{15}-\left(2003+1\right).2003^{14}+...+\left(2003+1\right).\left(2003-1\right)\)
\(=2003^{17}-2003^{17}+2003^{16}-2003^{16}+2003^{15}-2003^{15}+2003^{14}-2003^{14}+...+\left(2003+1\right).\left(2003-1\right)\)
\(=2004.2002=4012008\)
a)\(x^2+y^2=0\)mà \(x^2\ge0\)\(;\)\(y^2\ge0\)\(\Rightarrow x^2=0\)\(;\)\(y^2=0\)\(\Rightarrow\)\(x=0\)\(;\)\(y=0\)
b) Mình nghĩ ở câu b không thể xảy ra trường hợp < 0 đâu nha bạn.Bạn thử kiểm tra lại đề xem sao.
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2000}=0\)mà\(\left(2x-5\right)^{2000}\ge0\)\(;\)\(\left(3y+4\right)^{2000}\ge0\)\(\Rightarrow\)\(2x-5=0\)\(;\)\(3y+4=0\)\(\Rightarrow\)\(x=\frac{5}{2}\)\(;\)\(y=\frac{-4}{3}\)