Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)
+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)
+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)
+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)
Từ (1),(2),(3),(4) và (5) suy ra:
\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)
\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\)
\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)
Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)
\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)
\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )
Vậy \(a,b,c,d⋮5\)
Có \(P\left(x\right)⋮5\)với mọi x
=> \(P\left(0\right)=d⋮5\)
\(P\left(1\right)=a+b+c+d⋮5\)
\(P\left(-1\right)=-a+b-c+d⋮5\)
\(P\left(2\right)=8a+4b+2c+d⋮5\)
\(P\left(-2\right)=-8a+4b-2c+d\)
=> \(a+b+c⋮5\)và \(-a+b-c⋮5\)
=> \(a+b+c+\left(-a+b-c\right)⋮5\)
=> \(2b⋮5\)
Mà 2 là SNT và b nguyên
=> \(b⋮5\)
=> \(a+c⋮5\); \(-a-c⋮5\); \(8a+2c⋮5\); \(-8a-2c⋮5\)
=> \(2\left(a+c\right)⋮5\)
=> \(2a+2c⋮5\)
=> \(2a+2c+\left(-8a-2c\right)⋮5\)
=> \(-6a⋮5\)
mà 6 không chia hết cho 5
=> \(a⋮5\)
=> \(b⋮5\)
quá đơn giản với BỐ
Ta có:
\(P\left(0\right)=d\)
=> d chia hết cho 5
\(P\left(1\right)=a+b+c+d\)
=> a + b + c chia hết cho 5 (1)
\(P\left(-1\right)=-a+b-c+d\) chia hết cho 5 (2)
Cộng (1) và (2) ta được:
2b + 2d chia hết cho 5
Mà d chia hết cho 5 => 2d chia hết cho 5
=> 2b chia hết cho 5
=> b chia hết cho 5
\(P\left(2\right)=8a+4b+2c+d\) chia hết cho 5
=> 8a + 2c chia hết cho 5 ( Vì 4b + d chia hết cho 5 )
=> 6a + 2a + 2c chia hết cho 5
=> 6a + 2( a + c ) chia hết cho 5
=> 2( a + c ) chia hết cho 5 ( Vì a + b + c chia hết cho 5, b chia hết cho 5 )
=> 6a chia hết cho 5
=> a chia hết cho 5
=> c chia hết cho 5
Vậy a ; b ; c ; d chia hết cho 5
Có \(A\left(x\right)⋮5\) \(\forall x.\)
=> \(A\left(0\right)=d⋮5\)
\(A\left(1\right)=a+b+c+d⋮5\)
\(A\left(-1\right)=-a+b-c+d⋮5\)
\(A\left(2\right)=8a+4b+2c+d⋮5\)
\(A\left(-2\right)=-8a+4b-2c+d\)
=> \(a+b+c⋮5\) và \(-a+b-c⋮5.\)
=> \(a+b+c+\left(-a+b-c\right)⋮5\)
=> \(2b⋮5.\)
Mà 2 là số nguyên tố và b nguyên
=> \(b⋮5\left(đpcm\right)\)
=> \(a+c⋮5;-a-c⋮5;8a+2c⋮5;-8a-2c⋮5\)
=> \(2.\left(a+c\right)⋮5\)
=> \(2a+2c⋮5\)
=> \(2a+2c+\left(-8a-2c\right)⋮5\)
=> \(-6ac⋮5.\)
Mà 6 không chia hết cho 5
=> \(a⋮5.\)
=> \(c⋮5.\).
Chúc bạn học tốt!