Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có : 3x\(^2\)+ax + 27 : x+5 dư 2
=> 3x\(^2\) + ax + 27 = (x+5) . A(x) +2 với mọi x
=> 3x\(^2\)+ax+ 25 = (x+5) .A (x) với mọi x
Với x = -5 ta có :
3.(-5)\(^2\)+a(-5) +25= (-5+5).A(-5)
=> 100 + a(-5) = 0
=> a= 20
Vậy a= 20 thì \(3x^2\) + ax+27 chia x+5 dư 2
a) thuc hien phep chia \(3x^2+ax+27\)chia cho x+5 co thuong la 3x+(a-5) va so du la 102-5a
\(\Rightarrow102-5a=2\Rightarrow a-20\)
b) thuc hien phep chia \(2x^2+ax+1\)chia cho x-3 cho thuong la 2x+(a+6) va so du la 19+3a
\(\Rightarrow19+3a=1\Rightarrow a=-6\)
a, Gọi thương phép chia là Q(x) khi đó, ta có:
2x2 + ax +1 = (x-3).Q(x) +4
Với x=3 ta có: 2.32 + 3a +1= 0.Q(x) +4
19+3a = 4
=> 3a= -15
=> a= -5
Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số
Lời giải:
a) Áp dụng định lý Bê-du về phép chia đa thức ta có:
Số dư khi chia đa thức \(f(x)=2x^2+ax+1\) cho $x-3$ là \(f(3)\)
Ta có:
\(f(3)=4\)
\(\Leftrightarrow 2.3^2+a.3+1=4\Rightarrow a=-5\)
b) Ta thêm bớt để đa thức $x^4+ax^2+b$ xuất hiện $x^2-x+1$
\(x^4+ax^2+b=(x^4+x)+ax^2-x+b\)
\(=x(x^3+1)+a(x^2-x+1)+ax-x-a+b\)
\(=x(x+1)(x^2-x+1)+a(x^2-x+1)+x(a-1)+(b-a)\)
\(=(x^2-x+1)(x^2+x+a)+x(a-1)+(b-a)\)
Từ trên suy ra đa thức $x^4+ax^2+b$ khi chia cho đa thức $x^2-x+1$ thì dư \(x(a-1)+(b-a)\)
Để phép chia là chia hết thì :
\(x(a-1)+(b-a)=0, \forall x\Leftrightarrow \left\{\begin{matrix} a-1=0\\ b-a=0\end{matrix}\right.\Rightarrow a=b=1\)