K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

a, Gọi thương phép chia là Q(x) khi đó, ta có:

            2x+ ax +1 = (x-3).Q(x) +4

 Với x=3 ta có:   2.32 + 3a +1= 0.Q(x) +4

                                19+3a   = 4

   =>         3a= -15

    =>           a= -5

Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)

=>-4a+28=0

=>a=7

c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)

=>a+2=0 và b-1=0

=>a=-2 và b=1

18 tháng 1 2019

Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)

\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)

Vì đẳng thức trên đúng với mọi x thuộc R

=> Với x = -4

\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)

\(\Rightarrow32-4a-4=0\)

\(\Rightarrow28=4a\Leftrightarrow a=7\)

Các bài khác tương tự thôi 

18 tháng 1 2019

b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)

=> Q(x) có bậc 1

=> \(Q_{\left(x\right)}=bx+c\)

=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)

=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)

=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)

Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)

=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)

Đồng nhất hệ số => a = 3

10 tháng 12 2017

a,Để \(4x^2-6x+a=\left(x-3\right)\left(4x+6\right)+\left(a+18\right)⋮\left(x-3\right)\)

\(\Rightarrow x+18=0\Rightarrow x=-18\)

Các câu dưới tương tự bn tự làm nha!

10 tháng 12 2017

sao lại có (x+3) (4x-6) +(a+18): (x-3)