K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 4 2020

Bán kính đường tròn:

\(R=\sqrt{\left(m+1\right)^2+4+1}=\sqrt{\left(m+1\right)^2+5}\ge\sqrt{5}\)

\(\Rightarrow R_{min}=\sqrt{5}\) khi \(m+1=0\Leftrightarrow m=-1\)

12 tháng 4 2016

Ta có : -2a = -2 => a = 1

-2b = -2 => b = 1  => I(1; 1)

R2 = a2 + b2 – c = 12 + 12 – (-2) = 4  => R = 2

12 tháng 4 2016

I(2; -3); R = 4

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

12 tháng 4 2016

I (); R = 1

18 tháng 3 2016

2x2 + 2y2 - 5x - 4y + 1 + m2 = 0.<=> X^2+y^2-5/2x-2y+(1+m2)/2=0 
Tâm I(5/4;1) bán kính R=căn (41/16-(1+m2)/2) 

NV
14 tháng 6 2020

Đường tròn (C) tâm \(I\left(2;-2\right)\) bán kính \(R=3\)

\(\overrightarrow{MI}=\left(1;1\right)\Rightarrow IM=\sqrt{2}< R\Rightarrow\) M nằm phía trong đường tròn

Gọi H là hình chiếu vuông góc của I lên d \(\Rightarrow\) H là trung điểm AB

\(AB=2AH=2\sqrt{R^2-IH^2}=2\sqrt{9-IH^2}\)

\(\Rightarrow AB_{min}\) khi \(IH_{max}\)

Trong tam giác vuông IMH, ta luôn có: \(IH\le IM\Rightarrow IH_{max}=IM\) khi H trùng M hay d vuông góc IM

\(\Rightarrow\) Phương trình d (vuông góc IM và đi qua M)

\(1\left(x-1\right)+1\left(y+3\right)=0\Leftrightarrow x+y+2=0\)

NV
14 tháng 6 2020

Đường tròn (C) tâm \(I\left(-2;2\right)\) bán kính \(R=3\)

\(\overrightarrow{IM}=\left(3;-5\right)\Rightarrow IM=\sqrt{34}>R\)

\(\Rightarrow\) M nằm ngoài đường tròn

\(\Rightarrow\) Không tồn tại đường thẳng thỏa mãn yêu cầu (bạn xem lại đề, chỉ tìm được đường thẳng d khi điểm M nằm phía trong đường tròn)

14 tháng 10 2019

\(\hept{\begin{cases}mx+y=m^2+m+1\\-x+my=m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(my-m^2\right)+y-m^2-m-1=0\\x=my-m^2\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(m^2y-m^2\right)+\left(y-1\right)-\left(m^3+m\right)=0\\x=my-m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m^2+1\right)\left(y-m-1\right)=0\\x=my-m^2\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}y=m+1\\x=m\left(m+1\right)-m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m\\y=m+1\end{cases}}\)

\(\Rightarrow\)\(x^2+y^2=2m^2+2m+1=2\left(m+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra khi \(m=\frac{-1}{2}\) hay hệ có nghiệm \(\left(x;y\right)=\left(\frac{-1}{2};\frac{1}{2}\right)\)