Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
- \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
- Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
- từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)
Theo vi ét:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)
\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)
\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))
\(\Leftrightarrow2m^2-4m-13=0\)
Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.
Ta có : \(x^2-5x+m=0\left(a=1;b=-5;c=m\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=5;x_1x_2=m\)
Theo bài ra ta có : \(x_1^2+x_2^2+7=2\sqrt{x_2^2-3}+6x_1\)
Thay \(x_1;x_2\)lần lượt là \(x;y\)thì ta có phương trình mới :
\(x^2+y^2+7=2\sqrt{y^2-3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-\sqrt{3}^2}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y-\sqrt{3}}^2+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2y-2\sqrt{3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\left(y-\sqrt{3}+3x\right)\)
\(\Leftrightarrow\frac{\left(x+y\right)^2-2xy+7}{2}=y-\sqrt{3}+3x\)
Mời idol về giải chứ chưa đi sâu vào mấy cái căn này lắm, phá mãi mới ra mà chả biết nhóm vào đâu.
Xét \(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\)
Để phương trình có 2 nghiệm x1; x2 điều kiện là:
\(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\ge2\\m\le-2\end{cases}}\)( ***)
Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1.x_2=4\\x_1+x_2=2m\end{cases}}\)
Theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
<=> \(x_1^2+2x_1+1+x_2^2+2x_2+1=2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
<=> \(\left(2m\right)^2-2.4+2.\left(2m\right)=0\)
<=> \(m^2+m-2=0\)
<=> m = - 2 ( thỏa mãn (***) ) hoặc m = 1 ( không thỏa mãn ***)
Vậy m = - 2.
Có x1 +x2=-2
x1.x2=k
Có x1^2 +x2^2 =1
<=>(x1+x2)^2 - 2\(_{x_1x_2}\)=1
<=> (-2)^2 -2k =1
<=>4-2k=1
<=>2k=3
<=>k=2/3
Xét phương trình x2+2x+k=0
( a=1 , b=2 , c=k)
Δ= b2-4ac
=22- 4k
=4-4k
Để phương trình có 2 nghiệm phân biệt x1 , x2 thì Δ>0
hay 4-4k>0
⇔ -4k>-4
⇔ k<1
Với k<1 thì phương trình có 2 nghiệm x1 , x2
Áp dụng hệ thức Vi-et ta có :
x1 + x2 =-2
x1x2=k
Theo bài ra ta có :
x12+ x22= 1
⇔(x1+x2)2 - 2x1x2= 1
⇔(-2)2-2k=1
⇔4-2k=1
2k=3
k=3/2
Vậy k=3/2 là giá trị cần tìm