Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: x=2 là nghiệm của A(x)
=> A(2) = 22 + a.2 + b =0
=> 4 + a.2 + b =0
=> b = -4 - a.2
ta có: x = 3 là nghiệm của A(x)
=> A(3) = 32 +a.3 + b = 0
=> 9+ a.3 + b = 0
thay số: 9+ a.3 - 4-2.a = 0
( 9-4) + (a.3-2.a) = 0
5 + a = 0
=> a = -5
mà b = 4-a.2 = 4 - (-5).2 = 4 + 10 = 14
=> b = 14
KL: a = -5; b= 14
phần b bn lm tương tự nha!
Ta có \(f\left(x\right)\)có nghiệm là -1
=> \(f\left(-1\right)=0\)
=> \(\left(-1\right)^3+\left(-1\right)^3a+\left(-1\right)b-2=0\)
=> \(-1-a-b-2=0\)
=> \(-3-a-b=0\)
=> \(-a-b=3\)
=> \(-\left(a-b\right)=3\)
=> \(a-b=-3\)
=> \(a=-3+b\)(1)
và f (x) cũng có nghiệm là 1
=> \(f\left(1\right)=0\)
=> \(1^3+a.1^3+b-2=0\)
=> \(1+a+b-2=0\)
=> \(-1+a+b=0\)
=> \(a+b=1\)(2)
Thế (1) vào (2), ta có:
\(-3+b+b=1\)
=> \(-3+2b=1\)
=> \(2b=1+3\)
=> \(2b=4\)
=> \(b=2\)
=> \(a=-3+2=-1\)
Đa thức f(x) có 2 nghiệm là x = 1; x = -1 nên ta có:
\(f\left(1\right)=1+a+b-2=0\) \(\Leftrightarrow\)\(a+b=1\)
\(f\left(-1\right)=1+a-b-2=0\) \(\Leftrightarrow\) \(a-b=1\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=0\end{cases}}\)
Vậy...
a,ta có:
f(1)= a.12+2.1+b=0
=> a+2+b=0
=> a+b=-2 (1)
f(-2)= a.(-2)2+2.(-2)+b=0
=> 4a - 4 + b=0
=> 4a+b=4 (2)
Trừ vế (2) cho vế (1) ,ta có:
3a=6
=>a= 2
thay a =2 vào (1), ta có: 2+b=-2 => b= -4
Vậy a=2, b=-4
b,Do g(x) có 2 nghiệm 1 và -1 nên:
g(1)=3.13 + a.12+b.1+c = 0
=> 3+a+b+c =0
=> a+b+c = -3 (1)
g(-1) = 3. (-1)3+a.(-1)2+b(-1)+c=0
=> -3 +a -b+c =0
=> a-b+c=3 (2)
Trừ vế (1) cho vế (2), ta có:
2b=-6
=> b=-3
thay b=-3 vào (1), ta có:
a-3+c=-3
=> a+c=0
=> a+ 2a +1=0
=> 3a=-1
=> a= \(-\frac{1}{3}\)
Khi đó ta có: \(-\frac{1}{3}+c=0\Rightarrow c=\frac{1}{3}\)
Vậy:...
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:
G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)
Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)
Vậy a = -3 , b = -1
\(f\left(-1\right)=-1+a-b-2=0\left(1\right)\)
\(f\left(1\right)=1+a+b-2=0\left(2\right)\)
Lấy (1) cộng (2) ta đc :
\(2a-4=0\)
\(a=2\)
Thay a=2 vào (1) ta đc : b=-1
Vậy ...
f(1)=\(1^3+a.1^2+b.1-2=0\Rightarrow a+b=1\)1
f(-1)=\(\left(-1\right)^3+a.\left(-1\right)^2-b-2=0\) \(\Rightarrow a-b=3\)
\(\Rightarrow a+b+a-b=4\)\(\Rightarrow a=2\Rightarrow b=1\)
Câu a :
Đa thức \(A\left(x\right)=x^2+ax+b\) có 2 nghiệm \(x=2\) , \(x=3\)
\(\Leftrightarrow A\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}4+2a+b=0\\9+3a+b=0\end{matrix}\right.\)
Từ hệ trên ta giải được : \(\left\{{}\begin{matrix}a=-5\\b=6\end{matrix}\right.\)
lê thị hương giang, Mashiro Shiina, Aki Tsuki, DƯƠNG PHAN KHÁNH DƯƠNG, Nguyễn Hải Dương
pls help me this question