K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

\(\text{Gọi Nghiệm đó là: r}\Rightarrow f\left(r\right)=r^3+ar^2+br=-2020\Rightarrow r\inƯ\left(2020\right)\Rightarrow r=101\left(\text{vì 100}< r< 200\right)\)

vậy nghiệm đó là: 101

23 tháng 6 2020

Ta có: a,b nguyên, x nguyên:

\(x^3+ax^2+bx+2020=0\)

\(\Leftrightarrow x^3+ax^2+bx=-2020\)

\(\Leftrightarrow x^2+ax+b=\frac{-2020}{x}\)

Do a,b,x nguyên => \(\frac{-2020}{x}\)nguyên mà \(x\in\left(100;200\right)\)

\(\Rightarrow\frac{-2020}{x}\in\left(-20,1;-10,2\right)\)

Ta thay lần lượt các giá trị của \(\frac{-2020}{x}\)từ -20 -> -10 sao cho x nguyên

=> x=101 thỏa mãn yêu cầu bài toán

22 tháng 4 2018

Gọi nghiệm nguyên của P(x) là: k

ta có: \(ak^3+bk^2+ck+d=0\)

\(k.\left(ak^2+bk+k\right)=-d\)( *)

ta có: \(P_{\left(1\right)}=a+b+c+d\)

\(P_{\left(0\right)}=d\)

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> \(k^3-1;k^2-1;k-1\)là các số chẵn

\(\Rightarrow a\left(k^3-1\right)+b\left(k^2-1\right)+c\left(k-1\right)\) là số chẵn

\(=\left(ak^3+bk^2+ck\right)-\left(a+b+c\right)\)

mà a+b+c là số chẵn

\(\Rightarrow ak^3+bk^2+c\) là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

17 tháng 2 2020

  a)    Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)

   +)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)

     Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)

   +)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)

     Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)

Từ (1),(2)

    \(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm

17 tháng 2 2020

b)Ta có:\(f\left(x\right)=ax^2+bx+c\)

+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)

+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)

+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)

Từ (2);(3) cộng vế với vế ta được:

                  \(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)

                                                           \(=2a+2c\)

                                                           \(=2.\left(a+c\right):2007\)

    mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)

Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)

Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)

Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)