Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $f(x)$ chia hết cho $x^2-1=(x-1)(x+1)$ thì nó phải chia hết cho $x-1$ và $x+1$
Khi đó số dư của $f(x)$ khi chia cho $x-1; x+1$ phải bằng $0$
Áp dụng định lý Bê-du về phép chia đa thức, số dư của $f(x)$ khi chia cho $x-1,x+1$ lần lượt là:
\(f(1)=1+a+b=0\)
\(f(-1)=1-a+b=0\)
Cộng theo vế: \(2+2b=0\Rightarrow b=-1\)
Thay lại vào một trong 2 phương trình thì suy ra \(a=0\)
Gọi thương của phép chia F(x) cho G(x) là A(x)
Ta có
G(x)=x^2-3x+2=(x-2)(x-1)
Ta có
F(x)=G(x).A(x)
<=>x^4 -3x^3+x^2+ax+b=(x-2)((x-1).A(x)
Với x=2
=>-4+2a+b=0
<=>2a+b=4(1)
Với x=1
=>-1+a+b=0
<=>a+b=1(2)
Từ (1) và (2)
Ta có
2a+b=4 và a+b=1
giải ra =>a=3,b=-2
nhớ tick mình nha
Gọi thương của phép chia F(x) cho Q(x) là A(x)
Theo bài ra ta có: \(F\left(x\right)=x^4+ax^3+b=\left(x^2-1\right).A\left(x\right)\)
\(=\left(x-1\right)\left(x+1\right).A\left(x\right)\)
Do giá trị của biếu thức trên luôn đúng với mọi x nên lần lượt thay \(x=1;\)\(x=-1\)ta được:
\(\hept{\begin{cases}a+b+1=0\\-a+b+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=0\\b=-1\end{cases}}\)
Vậy....
Gọi thương của 2 đa thức trên là : R(x)
\(\Rightarrow x^4+ax^3+b=\left(x^2-1\right)R\left(x\right)\)
\(\Rightarrow x^4+ax^3+b=\left(x-1\right)\left(x+1\right)R\left(x\right)\)
Vì đẳng thức trên đúng với mọi x nên cho x = 1 và x = -1 ta có :
\(\hept{\begin{cases}x=1\Rightarrow1+a+b=0\Rightarrow a+b=-1\\x=-1\Rightarrow1-a+b=0\Rightarrow a-b=1\end{cases}}\)
\(\Rightarrow a=\left(1+-1\right):2=0\)
\(b=0-1=-1\)
khó lắm
hôm nay bọn mik vừa hok về chưa thấm đâu vô đâu nên kg giúp đc xin lỗi nhe!