Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt phép chia ra bạn nhé [như kiểu chia STN ấy]
Rùi đến cuối bạn đặt dư tùy theo đa thức chia là x+1 hay x-3
a ) \(x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)
\(f\left(x\right)=x^4+ax+b\)
Theo định lí bơ zu
\(\Rightarrow f\left(2\right)=16+2b+b=0\)
\(\Leftrightarrow2a+b=-16\) ( 1 )
\(\Rightarrow f\left(-2\right)=16-2a+b=0\)
\(\Leftrightarrow-2a+b=-16\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Leftrightarrow a=0;b=-16\)
x^4 +ax+b x^2+1 x^2-1 x^4-x^2 - x^2+ax+b x^2 -1 - ax+b+1
Để \(x^4+ax+b\)chia hết cho \(x^2-1\)
\(\Leftrightarrow ax+b+1=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-1\end{cases}}}\)
Vay ...
Đa thức \(x^2-1\)có nghiệm\(\Leftrightarrow x^2-1=0\Leftrightarrow x=\pm1\)
TH1: x = 1\(\Rightarrow1+a+b=0\Leftrightarrow a+b=-1\)
TH2: x = - 1\(\Rightarrow1-a+b=0\Leftrightarrow a-b=1\)
Có hệ\(\hept{\begin{cases}a+b=-1\\a-b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-1\end{cases}}\)
Vậy a = 0; b = -1 thì \(x^4+ax+b\)chia hết cho đa thức x2 -1
a) Theo định lí Bezout ta có:
\(f\left(-5\right)=3.\left(-5\right)^2-5a+27=2\)
\(\Leftrightarrow75-5a+27=2\)
\(\Leftrightarrow102-5a=2\)
\(\Rightarrow a=20\)
b) \(x^3+ax^2+x+b=\left(x^2-x+2\right).\left(x+m\right)\)(Trong đó m là số nguyên)
\(\Leftrightarrow x^3+ax^2+x+b=x^3+x^2.\left(m-1\right)-mx+2m\)
Sử dụng phương pháp đồng nhất hệ số ta có:
\(\hept{\begin{cases}ax^2=m-1\\x=-mx\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=m-1\\m=-1\\2m=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=-2\end{cases}}\Leftrightarrow a=b=-2\)
Ta có : \(\frac{x^3+ax+b}{x^2+2x-2}=\frac{\left(x^3+2x^2-2x\right)-\left(2x^2+4x-4\right)+ax+6x+b-4}{x^2+2x-2}\)
\(=\frac{x\left(x^2+2x-2\right)-2\left(x^2+2x-2\right)+ax+6x+b}{x^2+2x-2}\)\(=x-2+\frac{ax+6x+b-4}{x^2+2x-2}\)
Để \(x^3+ax+b⋮x^2+2x-2\) thì \(\frac{ax+6x+b-4}{x^2+2x-2}=0\Leftrightarrow x\left(a+6\right)+\left(b-4\right)=0\)
Đồng nhất ta được : \(\hept{\begin{cases}a+6=0\\b-4=0\end{cases}\Rightarrow\hept{\begin{cases}a=-6\\b=4\end{cases}}}\)
Đặt \(A\left(x\right)=2x^2+ax+1\)
Ta viết A dưới dạng : \(A\left(x\right)=\left(x-3\right).B\left(x\right)+4\)với B(x) là đa thức thương
Dễ thấy : \(A\left(3\right)=4\Rightarrow2.3^2+3.a+1=4\Leftrightarrow a=-5\)
Vậy a = -5