Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)
\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)
Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0
=>a=-1/3; b=2a+14=-2/3+14=40/3
Lời giải:
Khi \(f(x)=x^4+ax^2+b\) chia hết cho \(g(x)=x^2-3x+2\) thì ta có thể viết $f(x)$ dưới dạng:
\(f(x)=x^4+ax^2+b=(x^2-3x+2)Q(x)\) (trong đó $Q(x)$ là đa thức thương)
\(\Leftrightarrow x^4+ax^2+b=(x-1)(x-2)Q(x)\)
Thay \(x=1\Rightarrow 1+a+b=0(-1).Q(1)=0\Rightarrow a+b=-1\)
Thay \(x=2\Rightarrow 16+4a+b=1.0.Q(2)=0\Rightarrow 4a+b=-16\)
Từ hai điều trên suy ra \(a=-5, b=4\)
Bài 2:
Tách \(x^2-1=(x-1)(x+1)\)
Áp dụng định lý Bezout:
Số dư của \(f(x)=x^{10}+ax^3+b\) khi chia cho \(x-1\) là:
\(f(1)=1+a+b=2.1+1=3\)
\(\Rightarrow a+b=2(1)\)
Số dư của \(f(x)=x^{10}+ax^3+b\) khi chia cho \(x+1\) là:
\(f(-1)=1-a+b=2(-1)+1=-1\)
\(\Rightarrow -a+b=-2(2)\)
Từ \((1),(2)\Rightarrow \left\{\begin{matrix} a=2\\ b=0\end{matrix}\right.\)
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
a,c ở chỗ nào vậy bạn?