K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 9 2017

Lời giải:

Khi \(f(x)=x^4+ax^2+b\) chia hết cho \(g(x)=x^2-3x+2\) thì ta có thể viết $f(x)$ dưới dạng:

\(f(x)=x^4+ax^2+b=(x^2-3x+2)Q(x)\) (trong đó $Q(x)$ là đa thức thương)

\(\Leftrightarrow x^4+ax^2+b=(x-1)(x-2)Q(x)\)

Thay \(x=1\Rightarrow 1+a+b=0(-1).Q(1)=0\Rightarrow a+b=-1\)

Thay \(x=2\Rightarrow 16+4a+b=1.0.Q(2)=0\Rightarrow 4a+b=-16\)

Từ hai điều trên suy ra \(a=-5, b=4\)

AH
Akai Haruma
Giáo viên
20 tháng 9 2017

Bài 2:
Tách \(x^2-1=(x-1)(x+1)\)

Áp dụng định lý Bezout:

Số dư của \(f(x)=x^{10}+ax^3+b\) khi chia cho \(x-1\) là:

\(f(1)=1+a+b=2.1+1=3\)

\(\Rightarrow a+b=2(1)\)

Số dư của \(f(x)=x^{10}+ax^3+b\) khi chia cho \(x+1\) là:

\(f(-1)=1-a+b=2(-1)+1=-1\)

\(\Rightarrow -a+b=-2(2)\)

Từ \((1),(2)\Rightarrow \left\{\begin{matrix} a=2\\ b=0\end{matrix}\right.\)

20 tháng 11 2022

Bài 3:

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)

\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)

Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0

=>a=-1/3; b=2a+14=-2/3+14=40/3

10 tháng 12 2017

easy

8 tháng 1 2019

Bài 1 :

x2 - x - 2 = x2 - 2x + x - 2

= x( x - 2 ) + ( x - 2 ) = ( x - 2 ) ( x + 1 )

Để x3 + ax + b ⋮ ( x - 2 ) ( x + 1) thì :

x3 + ax + b = ( x - 2 ) ( x + 1 ) . Q

Vì đẳng thức trên đúng với mọi x, do đó :

+) đặt x = 2 ta có :

23 + 2a + b = ( 2 - 2 ) ( 2 + 1 ) . Q

8 + 2a + b = 0

2a + b = -8

b = -8 - 2a (1)

+) đặt x = -1 ta có :

(-1)3 + (-1)a + b = ( -1 - 2 ) ( -1 + 1 ) . Q

-1 - a + b = 0

-a + b = 1 (2)

Thay (1) vào (2) ta có :

-a - 8 - 2a = 1

<=> -3a = 9

<=> a = -3

=> b = 1 + (-3) = -2

Vậy a = -3; b = -2