Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\left(\dfrac{2x-x^2}{2x^2}+\dfrac{8-2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2}{x^2}+\dfrac{1-x}{x}\right)\)
\(=\left(\dfrac{2-x}{2x}-\dfrac{2\left(x+2\right)}{x^2+4}\right)\cdot\dfrac{2+x-x^2}{x^2}\)
\(=\dfrac{2x^2+8-x^3-4x-4x\left(x+2\right)}{2x\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{2x^2+8-x^3-4x-4x^2-8x}{2x\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{-x^3-2x^2-12x+8}{2x\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{\left(x^3+2x^2+12x-8\right)\left(x-2\right)\left(x+1\right)}{2x^3\left(x^2+4\right)}\)
8) ĐKXĐ: $-2\leq x\leq 1$
PT $\Leftrightarrow (2x+4)-4\sqrt{2x+4}+4+[(1-x)-2\sqrt{1-x}+1]=0$
$\Leftrightarrow (\sqrt{2x+4}-2)^2+(\sqrt{1-x}-1)^2=0$
Dễ thấy: $(\sqrt{2x+4}-2)^2; (\sqrt{1-x}-1)^2\geq 0$ với mọi $x\in [-2;1]$ nên để tổng của chúng bằng $0$ thì:
$(\sqrt{2x+4}-2)^2=(\sqrt{1-x}-1)^2=0$
$\Leftrightarrow \sqrt{2x+4}=2; \sqrt{1-x}-1=0$
$\Leftrightarrow x=0$ (thỏa mãn)
Vậy.....
7)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow x^2+[(x+1)-2\sqrt{x+1}+1]=0$
$\Leftrightarrow x^2+(\sqrt{x+1}-1)^2=0$
Ta thấy:
$x^2\geq 0; (\sqrt{x+1}-1)^2\geq 0$ với mọi $x\geq -1$
Do đó để tổng của chúng bằng $0$ thì $x^2=(\sqrt{x+1}-1)^2=0$
$\Leftrightarrow x=0$ (thỏa mãn)
Vậy.......
a: \(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\)
\(\Leftrightarrow4x^2+4x-8-4x^2-16x-16=0\)
=>-12x-24=0
=>-12x=24
hay x=-2
b: \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)
=>2x=1-41=-40
hay x=-20
c: \(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7\left(x^2-9\right)=36\)
\(\Leftrightarrow7x^2+8x+13-7x^2+63=36\)
=>8x=-40
hay x=-5
a/ ĐKXĐ: \(x\ge1\)
Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm
b/ \(x\ge1\)
\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=a\ge0\) ta được:
\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)
- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)
- Với \(0\le a\le1\) ta được:
\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)
- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)
c/ ĐKXĐ: \(x\ge\frac{49}{14}\)
\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)
Mà \(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(7-\sqrt{14x-49}\ge0\)
\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)
Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)
a) \(x^3+x^2-4x=4\)
\(\Leftrightarrow x^3+x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(4x+4\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{-1;2;-2\right\}\)
b) \(\left(x-1\right)\left(2x+3\right)-x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3-x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{1;-3\right\}\)
c) \(x^2-4x+8=2x-1\)
\(\Leftrightarrow x^2-4x+8-\left(2x-1\right)=0\)
\(\Leftrightarrow x^2-4x+8-2x+1=0\)
\(\Leftrightarrow x^2-6x+9=0\)
\(\Leftrightarrow x^2-2.x.3+3^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(x\in\left\{3\right\}\)