Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(x-15)-x.13=0$
$x-15-x.13=0$
$(x-x.13)-15=0$
$x(1-13)-15=0$
$x.(-12)-15=0$
$x.(-12)=15$
$x=15:(-12)=\frac{-5}{4}$
\(3x+2.\left(x-3\right)-x=2010\)
\(\Leftrightarrow3x+2x-6-x=2010\)
\(\Leftrightarrow4x-6=2010\)
\(\Leftrightarrow4x=2016\)
\(\Leftrightarrow x=504\)
Vậy...
\(3\times+2\left(\times-3\right)-\times=2010\)
\(\Rightarrow2\times+2\times-6=2010\)
\(\Rightarrow4\times-6=2010\)
\(\Rightarrow4\times=2016\)
\(\Rightarrow\times=504\)
\(5.8^{x+3}+\left(194:26\right)^0=2561\)
\(\Rightarrow5.8^{x+3}=2561-1=2560\)
\(\Rightarrow8^{x+3}=2560:5=512=8^3\)
\(\Rightarrow x+3=3\Leftrightarrow x=0\)
5.8x+3 + (194:26)0 = 2561
5.8x. 512 + 1 = 2561
8x . 2560 = 2560
8x =1 = 80
=> x = 0
`@` `\text {Ans}`
`\downarrow`
\(\left(\dfrac{x}{3}+\dfrac{1}{2}\right)\left(75\%-1\dfrac{1}{2}x\right)=0\)
`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}+\dfrac{1}{2}=0\\\dfrac{75}{100}-\dfrac{3}{2}x=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{1}{2}\\\dfrac{3}{2}x=\dfrac{75}{100}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=-1\cdot3\\x=\dfrac{75}{100}\div\dfrac{3}{2}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy, `x={-3/2; 1/2}.`
\(x^2-4x=0\)
\(x.\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy x=0 hoặc x=4
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
| x | + | 2x - 3 | = 0 (1)
Ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|2x-3\right|\ge0\end{cases}}\forall x\)
\(\Rightarrow\left|x\right|+\left|2x-3\right|\ge0\forall x\) (2)
Từ (1) và (2) => (1) \(\Leftrightarrow\) \(\hept{\begin{cases}\left|x\right|=0\\\left|2x-3\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
@@ Học tốt
!!! K chắc