Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=x\left[49-x^2\left(2x+1\right)^2\right]\)
\(=x\left[49-\left(2x^2+x\right)^2\right]\)
\(=x\left[\left(7-2x^2-x\right)\left(7+2x^2+x\right)\right]\)
b: \(=5\left[25x^2-\left(y^2-4y+4\right)\right]\)
\(=5\left[\left(5x-y+2\right)\left(5x+y-2\right)\right]\)
c: \(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x\right)\left(1+x+x^2\right)-4x\left(x-1\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
e: =(x-9)(x+6)
\(a.x^3+3x^2+4x+2\)
\(=x^3+x^2+2x^2+2x+2\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+2\right)\)
\(b.6x^4-x^3-7x^2+x+1\)
\(=6x^4-6x^3+5x^3-5x^2-2x^2+2x-x+1\)
\(=6x^3\left(x-1\right)+5x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(6x^3+5x^2-2x-1\right)\)
\(=\left(x-1\right)\left(6x^3+6x^2-x^2-x-x-1\right)\)
\(=\left(x-1\right)\left[6x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(6x^2-x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(6x^2-3x+2x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left[3x\left(2x-1\right)+\left(2x-1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\left(3x+1\right)\)
k giùm cái cho đỡ buồn!
mk thực sự cần bn hiểu bài
a) = x(x2 -4) -(x3 - 27) = x3 -4x -x3 +27
= 27-4x thay x = 1/4 có;
= 26
( nếu hiu dc mk lam tip cho)
\((6x+1)^2-2(x+1)^3+2(x-1)(x^2+x+1)=1\)
\(\Leftrightarrow36x^2+12x+1-2\left(x^3+3x^2+3x+1\right)+2\left(x^3-1\right)=1\)
\(\Leftrightarrow36x^2+12x+1-2x^3-6x^2-6x-2+2x^3-2=1\)
\(\Leftrightarrow30x^2+6x-4=0\)\(\Leftrightarrow2\left(15x^2+3x-2\right)=0\)
\(\Leftrightarrow15x^2+3x-2=0\)\(\Leftrightarrow15\left(x+\dfrac{1}{10}\right)^2-\dfrac{43}{20}=0\)
\(\Leftrightarrow15\left(x+\dfrac{1}{10}\right)^2=\dfrac{43}{20}\Leftrightarrow x=\pm\dfrac{\sqrt{129}}{30}-\dfrac{1}{10}\)
\(\left(x-3\right)^2-\left(x^2-3x\right)=0\)
\(\left(x-3\right).\left(x-3\right)-x.\left(x-3\right)=0\)
\(\left(x-3\right).\left(x-3-x\right)=0\)
\(\left(x-3\right).3=0\)
\(x-3=0=>x=3\)