Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo t/c dãy tỉ số bằng nhau :
\(\frac{x}{12}=\frac{y}{13}=\frac{z}{15}=\frac{3x+2y}{12.3+13.2}=\frac{26}{31}\)
\(\Rightarrow x=\frac{26}{31}.12=\frac{312}{31}\)
\(y=\frac{26}{31}.13=\frac{338}{31}\)
\(z=\frac{26}{31}.15=\frac{390}{31}\)
\(\Rightarrow\frac{3x}{36}=\frac{2y}{26}=\frac{z}{15}\)
+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{36}=\frac{2y}{26}=\frac{z}{15}=\frac{3x+2y}{36+26}=\frac{52}{62}=\frac{26}{31}\)
Suy ra \(\frac{3x}{36}=\frac{26}{31}\Rightarrow x=\frac{312}{31}\)
\(\frac{2y}{26}=\frac{26}{31}\Rightarrow y=\frac{338}{31}\)
\(\frac{z}{15}=\frac{26}{31}\Rightarrow z=\frac{390}{31}\)
Vậy \(x=\frac{312}{31};y=\frac{338}{31};z=\frac{390}{31}\)
Chúc bạn học tốt !!!
\(3x=2y=5z=>\frac{3x}{30}=\frac{2y}{30}=\frac{5z}{30}=>\frac{x}{10}=\frac{y}{15}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{10+15+6}=-\frac{62}{31}=-2\)
\(\frac{x}{10}=-2=>x=-20\)
\(\frac{y}{15}=-2=>y=-30\)
\(\frac{z}{6}=-2=>z=-12\)
Vậy ....
a) x : 2 = y : (-5)
⇒ x/2 = y/(-5)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/(-5) = (x - y)/(2 + 5) = 14/7 =
x/2 = 2 ⇒ x = 2.2 = 4
y/(-5) = 2 ⇒ y = 2.(-5) = -10
Vậy x = 4; y = -10
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/5 = z/6 = (x - y + z)/(2 - 5 + 6) = 24/3 = 8
x/2 = 8 ⇒ x = 8.2 = 16
y/5 = 9 ⇒ y = 8.5 = 40
z/6 = 8 ⇒ z = 8.6 = 48
Vậy x = 16; y = 40; z = 48
c) 2x = 3y = 6z
⇒ x/(1/2) = y/(1/3) = z/(1/6)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/(1/2) = y/(1/3) = z/(1/6) = (x + y - z)/(1/2 + 1/3 - 1/6) = 8/(2/3) = 12
2x = 12 ⇒ x = 12 : 2 = 6
3y = 12 ⇒ y = 12 : 3 = 4
6z = 12 ⇒ z = 12 : 6 = 2
Vậy x = 6; y = 4; z = 2
d) x/3 = y/2 = z/(-3)
⇒ 2x/6 = 3y/6 = 4z/(-12)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/6 = 3y/6 = 4z/(-12) = (2x - 3y + 4z)/(6 - 6 - 12) = 48/(-12) = -4
x/3 = -4 ⇒ x = -4.3 = -12
y/2 = -4 ⇒ y = -4.2 = -8
z/(-3) = -4 ⇒ z = -4.(-3) = 12
Vậy x = -12; y = -8; z = 12
e) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/5 = y/6 = z/7 = (x - y)/(5 - 6) = 36/(-1) = -36
x/5 = -36 ⇒ x = -36.5 = -180
y/6 = -36 ⇒ y = -36.6 = -216
z/7 = -36 ⇒ z = -36.7 = -252
Vậy x = -180; y = -216; z = -252
f) x/12 = y/13
⇒ 3x/36 = 2y/26
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
3x/36 = 2y/26 = (3x + 2y)/(36 + 26) = 52/62 = 26/31
x/12 = 26/31 ⇒ x = 26/31 . 12 = 312/31
y/13 = 26/31 ⇒ y = 26/31 . 13 = 338/31
z/15 = 26/31 ⇒ z = 26/31 . 15 = 390/31
Vậy x = 312/31; y = 338/31; z = 390/31
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
Bài 1:
Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)
Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)
\(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{7}=3\Rightarrow y=3.7=21\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15
thank trc ^~^
\(3x=2y=5z\)
\(\Rightarrow\dfrac{3x}{30}=\dfrac{2y}{30}=\dfrac{5z}{30}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{6}=\dfrac{x+y+z}{10+15+6}=\dfrac{-62}{31}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=-2\\\dfrac{y}{15}=-2\\\dfrac{z}{6}=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\cdot10=-20\\y=-2\cdot15=-30\\y=-2\cdot6=-12\end{matrix}\right.\)
Ta có: \(3x=2y=5z\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{2}}=\dfrac{z}{\dfrac{1}{5}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \(x+y+z=-62\), ta được:
\(\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{2}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y+z}{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{1}{5}}=\dfrac{-62}{\dfrac{31}{30}}=-60\)
\(\Rightarrow\left\{{}\begin{matrix}x=-60\cdot\dfrac{1}{3}=-20\\y=-60\cdot\dfrac{1}{2}=-30\\z=-60\cdot\dfrac{1}{5}=-12\end{matrix}\right.\)
Vậy \(x=-20;y=-30;z=-12\).
Áp dụng dãy tỉ số bằng nhau
\(\dfrac{x}{12}=\dfrac{y}{13}=\dfrac{z}{15}=\dfrac{3x}{36}=\dfrac{2y}{26}=\dfrac{3x+2y}{36+26}=\dfrac{62}{62}=1\)
Khi đó x = 12 ; y = 13 ; y = 15