Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\dfrac{1}{x-1}-\dfrac{1}{x+1}\)
\(=\dfrac{1.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+1+\left(-x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+1-x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{1}{x^2-1}\)
2. \(\dfrac{x}{x^2-1}-\dfrac{1}{x-1}\)
\(=\dfrac{x}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x}{\left(x+1\right)\left(x-1\right)}+\dfrac{-\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+\left(-x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{-1}{x^2-1}\)
3. \(\dfrac{1}{x\left(x-y\right)}-\dfrac{1}{x\left(x-y\right)}\)
\(=\dfrac{1}{y\left(x-y\right)}+\dfrac{-1}{x\left(x-y\right)}\)
\(=\dfrac{1x}{y\left(x-y\right)x}+\dfrac{-1y}{x\left(x-y\right)y}\)
\(=\dfrac{x}{xy\left(x-y\right)}+\dfrac{-y}{xy\left(x-y\right)}\)
\(=\dfrac{x-y}{xy\left(x-y\right)}=\dfrac{1}{xy}\)
4. \(\dfrac{1}{x}-\dfrac{1}{x-1}\)
\(=\dfrac{1\left(x-1\right)}{x\left(x-1\right)}-\dfrac{1x}{\left(x-1\right)x}\)
\(=\dfrac{x-1}{x\left(x-1\right)}+\dfrac{-x}{x\left(x-1\right)}\)
\(=\dfrac{\left(x-1\right)-x}{x\left(x-1\right)}\)
\(=\dfrac{-1}{x\left(x-1\right)}\)
5. \(\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(=\dfrac{1\left(x+1\right)}{x\left(x+1\right)}-\dfrac{1x}{\left(x+1\right)x}\)
\(=\dfrac{x+1}{x\left(x+1\right)}+\dfrac{-x}{x\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)-x}{x\left(x+1\right)}\)
6. \(\dfrac{1}{2x^2-10x}-\dfrac{1}{x-5}\)
\(=\dfrac{1}{2x\left(x-5\right)}-\dfrac{1}{x-5}\)
\(=\dfrac{1}{2x\left(x-5\right)}-\dfrac{1.2x}{2x\left(x-5\right)}\)
\(=\dfrac{1}{2x\left(x-5\right)}+\dfrac{-2x}{2x\left(x-5\right)}\)
\(=\dfrac{1-2x}{2x\left(x-5\right)}\)
7. \(\dfrac{x-1}{x^2-1}.\dfrac{x+1}{x+3}\)
\(=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x^2-1\right)\left(x+3\right)}\)
\(=\dfrac{x^2-1}{\left(x^2-1\right)\left(x+3\right)}\)
8. \(\dfrac{2}{2x^2+10x}.\dfrac{x+5}{3x}\)
\(=\dfrac{2x\left(x+5\right)}{2x^2+10x.3x}\)
\(=\dfrac{2\left(x+5\right)}{2x\left(x+5\right)3x}\)
\(=\dfrac{2}{6x^2}=\dfrac{1}{3x^2}\)
\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)
\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)
\(\Leftrightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow2x+4=2x+3\)
\(\Leftrightarrow0x=-1\)(vô nghiệm)
Vậy phương trình vô nghiệm.
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)
\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)
\(\Leftrightarrow2x+7=-10\)
\(\Leftrightarrow2x=-17\)
\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)
Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)
Tiếp
\(=\left(\frac{x+1+x}{\left(x-1\right)\left(x+1\right)}\right).\left(\frac{x^2+x+1}{2x+1}\right)=\left(\frac{x^2+x+1}{x^2-1}\right)=1+\frac{x+2}{x^2-1}\)
a) \(\frac{1}{x-1}\)+\(\frac{2}{x+1}\)=\(\frac{x}{x^2-1}\) (ĐKXĐ:x≠1;x≠-1)
⇔\(\frac{x+1}{\left(x-1\right)\left(x+1\right)}\)+\(\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)=\(\frac{x}{\left(x-1\right)\left(x+1\right)}\)
⇒x+1+2x-2=x
⇔2x-1=0
⇔x=\(\frac{1}{2}\) (TMĐKXĐ)
Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{1}{2}\)}
những cách làm câu còn lại chẳng khác gì cách làm của câu này, bạn tự làm được mà!
Ta có
\(\frac{1}{x^2-x+1}-x=1\)
<=>\(\frac{1-x^3+x^2-x}{x^2-x+1}=1\)
<=>\(1-x^3+x^2-x=x^2-x+1\)
<=>\(x^3=0\)
<=>\(x=0\)
Nhớ tick mình nha bạn,cảm ơn nhiều.
(\(x+1\))2 - (\(x+1\)) = 0
(\(x+1\))(\(x+1-1\)) =0
(\(x+1\))\(x\) = 0
\(\left[{}\begin{matrix}x+1=0\\x=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)
Vậy \(x\in\){ -1; 0}
Giải bằng cách phân tích đa thức thành nhân tử nhé mn