Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+y\right)^2=4x^2+4xy+y^2\)
\(\left(x-\frac{y}{2}\right)^2=x^2-xy+\frac{y^2}{4}\)
\(\left(x^2+\frac{y}{2}\right)\left(x^2-\frac{y}{2}\right)=x^4-\frac{y^2}{4}\)
\(\left(x-2y\right)^2\left(x+2y\right)^2=\left(x^2-4y^2\right)^2\)
\(=x^4-8x^2y^2+16y^4\)
\(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\left(x-2y\right)^2=x^2-4xy+4y^2\)
\(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)
\(\left(x+y\right)^2-4\left(x-y\right)+4=x^2+2xy+y^2-4x+4y+4\)
\(\left(2x+y\right)^2=4x^2+4xy+y^2\)
\(\left(x-\frac{y}{2}\right)^2=x^2-xy+\frac{y^2}{4}\)
\(\left(x^2+\frac{y}{2}\right)\left(x^2-\frac{y}{2}\right)=x^4-\frac{x^2y}{2}+\frac{x^2y}{2}-\frac{y^2}{4}=x^4-\frac{y^2}{4}\)
\(\left(x-2y\right)^2\left(x+2y\right)^2=x^4-8x^2y^2+16y^4\)
\(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\left(x-2y\right)^2=x^2-4xy+4y^2\)
\(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-xy^2+xy^2-1=x^2y^4-1\)
\(\left(x+y\right)^2-4\left(x-y\right)+4=x^2+2xy+y^2-4x+4y+4\)
\(=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-2xy+xy-2y^2}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}:\dfrac{x+y}{2x^2+y+2}\)
\(=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right)\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\cdot\dfrac{2x^2+y+2}{x+y}\)
\(=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{x+1}{2x^2+y-2}\)
\(=\dfrac{-\left(2x^2+y-2\right)}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{x+1}{2x^2+y-2}=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(x+y\right)}\)
A=\(\left(x-y\right)^2+\left(x+y\right)^2=x^2-2xy+y^2+x^2+2xy+y^2=2x^2+2y^2\)
B=\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=\left(2y\right).\left(2x\right)\)
C=\(\left(2a+b\right)^2-\left(2a-b\right)^2=\left(2a+b-2a+b\right)\left(2a+b+2a-b\right)=\left(2b\right).\left(4a\right)\)
D=\(\left(2x-1\right)^2-2\left(2x-3\right)^2+4=4x^2-4x+1-4x+6+4=4x^2-8x+11\)
E=\(\left(x+3y\right)^2-\left(x-3y\right)^2=\left(x+3y-x+3y\right)\left(x+3y+x-3y\right)=\left(6y\right).\left(2x\right)\)
F=\(\left(2x+y\right)^2-\left(2x-y\right)^2=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)=\left(2y\right).\left(4x\right)\)
G=\(\left(x-2y\right)^2+4\left(x-2y\right)y+4y^2=x^2-4xy+4y^2+4xy-8y^2+4y^2=x^2\)
H=\(\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y^{ }\right)^2=x^2-2xy+y^2-4\left(x^2+2xy-xy-2y^2\right)+4x+8y=x^2-2xy+y^2-4x^2-8xy+4xy+8y^2+4x+8y=3x^2+12xy-9y^2+4x+8y\)
Ta có:
a) A= (x-y)^2 + (x+y)^2
A= x^2 -2xy + y^2 + x^2 + 2xy + y^2
A= 2x^2+ 2y^2
b) B= (x+y)^2 -( x-y)^2
B= (x+y-x+y)(x+y+x-y)
B= 2y.2x= 4xy
c) C= (2a+b)^2 -( 2a-b)^2
C= (2a+b-2a+b)(2a+b+2a-b)
C= 2b.4a
C= 8ab
d) D= (2x-1)^2 -2(2x-3)^2+4
D= 4x^2 -4x+1 -2( 4x^2 -12x + 9) +4
D= 4x^2 -4x+1 -8x^2 + 24x -18 +4
D= -4x^2 + 20x-13
e) E= (x+3y)^2-(x-3y)^2
E= (x+3y-x+3y)(x+3y+x-3y)
E= 6y.2x= 12xy
f) F= (2x+y)^2-(2x-y)^2
F=(2x+y-2x+y)(2x+y+2x-y)
F= 2y.4x= 8xy
g) G= (x-2y)^2 + 4(x-2y)y + 4y^2
G= (x-2y)^2 + 2(x-2y)2y + (2y)^2
G= (x-2y+2y)^2
G= x^2
h) H= (x-y)^2 -4(x-y)(x+2y)+ 4(x+2y)^2
H= (x-y)^2 - 2(x-y)2(x+2y) + [2(x+2y)]^2
H= (x-y- 2x-4y)^2
H= (-x-5y)^2
Lưu ý (-A-B)^2 = ( A+ B)^2
=> H= (x+5y)^2
2y^2 +xy -x^2 =y(y+x) +y^2 -x^2 =(x+y)(2y-x)
4x^2 +4x^2 y +y^2 -4 =4x^2 (y+1) +y^2-4 có vẻ hệ số lệch lại nhỉ
x^2 +y +xy +x =x(x+y) +x+y =(x+y) (x+1)
\(B=\dfrac{x-y}{2y-x}+\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}=\dfrac{x^2-y^2+\left(x^2+y^2+y-2\right)}{\left(x+y\right)\left(2y-x\right)}=\dfrac{2x^2+y-2}{\left(x+y\right)\left(2y-x\right)}\)\(C=\dfrac{4x^2\left(y+1\right)+y^2-4}{\left(x+y\right)\left(x+1\right)}\)
\(A=B:C=\dfrac{2x^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\dfrac{\left(x+y\right)\left(x+1\right)}{4x^2\left(y+1\right)+y^2-4}\)
\(A=\dfrac{2x^2+y-2}{\left(2y-x\right)}.\dfrac{\left(x+1\right)}{4x^2\left(y+1\right)+y^2-4}\)
\(B=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
\(=\frac{x^2y-x^2z+zy^2-xy^2+z^2x-z^2y}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)
\(=\frac{\left(x^2y-z^2y\right)-\left(xy^2-zy^2\right)-\left(x^2z-z^2x\right)}{\left(x^2-y^2\right)\left(y-z\right)}\)
\(=\frac{\left[y\left(x+z\right)-y^2-xz\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left(xy+zy-y^2-xz\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left[\left(xy-y^2\right)-\left(xz-zy\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left[y\left(x-y\right)-z\left(x-y\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{x-z}{x+y}\)
\(A=\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)
\(=\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}\)
\(=\frac{\left(x^2y+x^2\right)+\left(x^2y^2-y^2\right)-\left(y+1\right)}{\left(x^2y+x^2\right)+\left(x^2y^2+y^2\right)+\left(y+1\right)}\)
\(=\frac{x^2\left(y+1\right)+y^2\left(x^2-1\right)-\left(y+1\right)}{x^2\left(y+1\right)+y^2\left(x^2+1\right)+\left(y+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(y+1\right)+y^2\left(x^2-1\right)}{\left(x^2+1\right)\left(y+1\right)+y^2\left(x^2+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(y^2+y+1\right)}{\left(x^2+1\right)\left(y^2+y+1\right)}\)
\(=\frac{x^2-1}{x^2+1}\)