Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
\(=\frac{x^2y-x^2z+zy^2-xy^2+z^2x-z^2y}{x^2\left(y-z\right)-y^2\left(y-z\right)}\)
\(=\frac{\left(x^2y-z^2y\right)-\left(xy^2-zy^2\right)-\left(x^2z-z^2x\right)}{\left(x^2-y^2\right)\left(y-z\right)}\)
\(=\frac{\left[y\left(x+z\right)-y^2-xz\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left(xy+zy-y^2-xz\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left[\left(xy-y^2\right)-\left(xz-zy\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left[y\left(x-y\right)-z\left(x-y\right)\right]\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{\left(y-z\right)\left(x-y\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}\)
\(=\frac{x-z}{x+y}\)
\(A=\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)
\(=\frac{x^2y-y^2+x^2-y+x^2y^2-1}{x^2y+y^2+x^2+y+x^2y^2+1}\)
\(=\frac{\left(x^2y+x^2\right)+\left(x^2y^2-y^2\right)-\left(y+1\right)}{\left(x^2y+x^2\right)+\left(x^2y^2+y^2\right)+\left(y+1\right)}\)
\(=\frac{x^2\left(y+1\right)+y^2\left(x^2-1\right)-\left(y+1\right)}{x^2\left(y+1\right)+y^2\left(x^2+1\right)+\left(y+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(y+1\right)+y^2\left(x^2-1\right)}{\left(x^2+1\right)\left(y+1\right)+y^2\left(x^2+1\right)}\)
\(=\frac{\left(x^2-1\right)\left(y^2+y+1\right)}{\left(x^2+1\right)\left(y^2+y+1\right)}\)
\(=\frac{x^2-1}{x^2+1}\)
a, Xét tử thức \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left[\left(x-z\right)-\left(y-z\right)\right]\)
\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-z\right)-z^2\left(y-z\right)\)
\(=\left(x^2-z^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(x+z\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(xy-xz+yz-z^2-y^2-yz+yz+z^2\right)\)
\(=\left(x-z\right)\left(xy-xz+yz-y^2\right)=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)
Mẫu thức \(x^2y-x^2z+y^2z-y^3=x^2\left(y-z\right)-y^2\left(y-z\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\)
Vậy \(\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}=\frac{x-z}{x+y}\)
b, \(\frac{x^5+x+1}{x^3+x^2+x}=\frac{x^5-x^2+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}=\frac{x^3-x^2+1}{x}\)
a,A=5x2z-10xyz+5y2z
=5z(x2-2xy+y2)
=5z(x-y)2
Thay x=124,y=24,z=2 vào A ta được:
A=5.2(124-24)2=10.1002=10000
b,B=2x2+2y2-x2z+z-y2z-2
=2(x2+y2)-z(x2+y2)+(z-2)
=(2-z)(x2+y2)-(2-z)
=(2-z)(x2+y2-1)
Thay x=1,y=1,z=-1 vào B
B=(2+1)(12+12-1)=3
c, C=x2-y2+2y-1
=x2-(y2-2y+1)
=x2-(y-1)2
=(x-y+1)(x+y-1)
=(75-26+1)(75+26-1)
=50.100=5000
Câu a:
Xét tử số:
\(x^2(y-z)+y^2(z-x)+z^2(x-y)\)
\(=x^2(y-z)-y^2[(y-z)+(x-y)]+z^2(x-y)\)
\(=x^2(y-z)-y^2(y-z)-y^2(x-y)+z^2(x-y)\)
\(=(x^2-y^2)(y-z)-(y^2-z^2)(x-y)\)
\(=(x-y)(y-z)[(x+y)-(y+z)]=(x-y)(y-z)(x-z)\)
Xét mẫu số:
\(x^2y-x^2z+y^2z-y^3=x^2(y-z)-y^2(y-z)=(x^2-y^2)(y-z)\)
\(=(x-y)(x+y)(y-z)\)
Do đó:
\(\frac{x^2(y-z)+y^2(z-x)+z^2(x-y)}{x^2y-x^2z+y^2z-y^3}=\frac{(x-y)(y-z)(x-z)}{(x-y)(x+y)(y-z)}=\frac{x-z}{x+y}\)
Câu b:
Xét tử số:
\(x^5+x+1=x^5-x^2+x^2+x+1=x^2(x^3-1)+x^2+x+1\)
\(=x^2(x-1)(x^2+x+1)+(x^2+x+1)\)
\(=(x^2+x+1)(x^3-x^2+1)\)
Xét mẫu số:
\(x^3+x^2+x=x(x^2+x+1)\)
Do đó: \(\frac{x^5+x+1}{x^3+x^2+1}=\frac{(x^2+x+1)(x^3-x^2+1)}{x(x^2+x+1)}=\frac{x^3-x^2+1}{x}\)
bài 1:
a) x2 + 10x + 26 + y2 + 2y
= (x2 + 10x + 25) + (y2 + 2y + 1)
= (x + 5)2 + (y + 1)2
b) z2 - 6z + 5 - t2 - 4t
= (z - 3)2 - (t + 2)2
c) x2 - 2xy + 2y2 + 2y + 1
= (x2 - 2xy + y2) + (y2 + 2y + 1)
= (x - y)2 + (y + 1)2
d) 4x2 - 12x - y2 + 2y + 1
= (4x2 - 12x ) - (y2 + 2y + 1)
= ......................................
ok mk nhé!! 4545454654654765765767587876968345232513546546575675767867876876877687975675
đã tắt máy chưa để cho mình giải nha
Giúp mik nha mọi người :)