Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> z < y (2)
Từ (1) và (2) => x < z < y
Vì x<y⇒ab <cd ⇒ad<bc (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> ab <a+cb+d
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> a+cb+d <cd
=> z < y (2)
Từ (1) và (2) => x < z < y
Sửa đề : \(z=\frac{a+c}{b+d}\)
Vì x < y
=> \(\frac{a}{b}< \frac{c}{d}\)
<=> \(ad< bc\)
<=> \(ab+ad< bc+ba\)
<=> \(a\left(b+d\right)< b\left(c+a\right)\)
<=> \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
=> x < z < y
Vì \(\frac{a}{b}< \frac{c}{d}\)nên ad < bc (1)
Xét tích a(b + d) = ab + ad (2)
b(a + c) = ba + bc (3)
Từ (1);(2);(3) suy ra a(b + d) < b(a + c) => \(\frac{a}{b}< \frac{a+c}{b+d}\) (4)
Tương tự ta có \(\frac{a+c}{b+d}< \frac{c}{d}\) (5)
Từ (4);(5) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)hay x < z < y
Ta có : x < y mà \(x=\frac{a}{m}\)và \(y=\frac{b}{m}\)
\(\Rightarrow a< b\)
a<b \(\Rightarrow a+a< b+a\)
\(\text{Hay}\)\(2a< b+a\)
\(\Rightarrow\frac{a+b}{2m}>\frac{2a}{2m}\)
\(\Rightarrow z>x\)( 1)
a < b \(\Rightarrow a+b< b+b\)
Hay \(a+b< 2b\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow z< y\)(2)
Từ (1) và (2) suy ra : x < z < y (đpcm)
\(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)
\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
\(\Rightarrow x< z< y\)
Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
\(x< z\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\Rightarrow ab+ad< ab+bc\Rightarrow ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\)(đúng do x<y)
\(z< y\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow ad+cd< bc+cd\Rightarrow ad< bc\)(đúng do x<y)
Vậy x<z<y