Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{x^2+2x+1}{x^2-1}\left(x\ne\pm1\right)\)
\(=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)
Để A nguyên => \(\frac{2}{x-1}\)nguyên => 2 chia hết cho x-1
x nguyên => x-1 nguyên => x-1 \(\in\)Ư(2)={-2;-1;1;2}
ta có bảng
x-1 | -2 | -1 | 1 | 2 |
x | -1 | 0 | 2 | 3 |
Để \(\frac{6}{2x+1}\)nguyên thì
\(2x+1\inƯ\left(6\right)\)
\(\Rightarrow2x+1=\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
Để x nhận giá trị nhỏ nhất thì :
\(2x+1=-6\)
\(\Rightarrow x=-3,5\)
Để biểu thức nguyên thì :
\(x+5⋮x^2+4\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)⋮x^2+4\)
\(\Leftrightarrow x^2-25⋮x^2+4\)
\(\Leftrightarrow x^2+4-29⋮x^2+4\)
Mà \(x^2+4⋮x^2+4\)
\(\Rightarrow-29⋮x^2+4\)
\(\Rightarrow x^2+4\inƯ\left(29\right)=\left\{1;29\right\}\)( vì \(x^2+4>0\))
Đến đây dễ rồi
Bài 1: ĐKXĐ:`x + 3 ne 0` và `x^2+ x-6 ne 0 ; 2-x ne 0`
`<=> x ne -3 ; (x-2)(x+3) ne 0 ; x ne2`
`<=>x ne -3 ; x ne 2`
b) Với `x ne - 3 ; x ne 2` ta có:
`P= (x+2)/(x+3) - 5/(x^2 +x -6) + 1/(2-x)`
`P = (x+2)/(x+3) - 5/[(x-2)(x+3)] + 1/(2-x)`
`= [(x+2)(x-2)]/[(x-2)(x+3)] - 5/[(x-2)(x+3)] - (x+3)/[(x-2)(x+3)]`
`= (x^2 -4)/[(x-2)(x+3)] - 5/[(x-2)(x+3)] - (x+3)/[(x-2)(x+3)]`
`=(x^2 - 4 - 5 - x-3)/[(x-2)(x+3)]`
`= (x^2 - x-12)/[(x-2)(x+3)]`
`= [(x-4)(x+3)]/[(x-2)(x+3)]`
`= (x-4)/(x-2)`
Vậy `P= (x-4)/(x-2)` với `x ne -3 ; x ne 2`
c) Để `P = -3/4`
`=> (x-4)/(x-2) = -3/4`
`=> 4(x-4) = -3(x-2)`
`<=>4x -16 = -3x + 6`
`<=> 4x + 3x = 6 + 16`
`<=> 7x = 22`
`<=> x= 22/7` (thỏa mãn ĐKXĐ)
Vậy `x = 22/7` thì `P = -3/4`
d) Ta có: `P= (x-4)/(x-2)`
`P= (x-2-2)/(x-2)`
`P= 1 - 2/(x-2)`
Để P nguyên thì `2/(x-2)` nguyên
`=> 2 vdots x-2`
`=> x -2 in Ư(2) ={ 1 ;2 ;-1;-2}`
+) Với `x -2 =1 => x= 3` (thỏa mãn ĐKXĐ)
+) Với `x -2 =2 => x= 4` (thỏa mãn ĐKXĐ)
+) Với `x -2 = -1=> x= 1` (thỏa mãn ĐKXĐ)
+) Với `x -2 = -2 => x= 0`(thỏa mãn ĐKXĐ)
Vậy `x in{ 3 ;4; 1; 0}` thì `P` nguyên
e) Từ `x^2 -9 =0`
`<=> (x-3)(x+3)=0`
`<=> x= 3` hoặc `x= -3`
+) Với `x=3` (thỏa mãn ĐKXĐ) thì:
`P = (3-4)/(3-2)`
`P= -1/1`
`P=-1`
+) Với `x= -3` thì không thỏa mãn ĐKXĐ
Vậy với x= 3 thì `P= -1`
\(A=\dfrac{x-5}{x-11}=1+\dfrac{6}{x-11}\)
Để `A` có giá trị nguyên thì \(\dfrac{6}{x-11} \in Z\)
\(=>x-11 \in Ư_{6}\)
Mà \(Ư_{6}=\){\(\pm 1 ;\pm 2;\pm 3;\pm 6\)}
\(=>x \in \){`10;12;9;13;8;14;5;17`}