Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
$(2x+1)^2-(2x+1)(2x-1)=(2x+1)[(2x+1)-(2x-1)]$
$=2(2x+1)$
b)
$(4x+3)(x-1)-2x(2x+1)=4x^2-x-3-4x^2-2x=-3x-3=-3(x+1)$
c)
$(2x+3)^2-(4x+1)(x+5)=(4x^2+12x+9)-(4x^2+21x+5)$
$=-9x+4$
d)
$(x+2)^3-(x-1)(x^2+x+1)=(x^3+6x^2+12x+8)-(x^3-1)$
$=6x^2+12x+9$
e)
$(x+2)(x^2-2x+1)-(x+3)(x-3)=(x^3-3x+2)-(x^2-9)$
$=x^3-x^2-3x+11$
f)
$(x+3)(x^2-3x+9)-(x^2+2x+4)(x-2)$
$=x^3+3^3-(x^3-2^3)=3^3+2^3=35$
a, \(\frac{1+2x-5}{6}=\frac{3-x}{4}\)
\(\frac{4+8x-20}{24}=\frac{18-6x}{24}\)
\(-16-8x=18-6x\)
\(-16-8x-18+6x=0\)
\(-34-2x=0\)
\(2x=-34\Leftrightarrow x=-17\)
b, \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)ĐKXĐ : x \(\ne\)-1 ; 0
\(\frac{x^2+3x}{x^2+x}+\frac{x^2-x-2}{x^2+x}=\frac{2x^2+2x}{x^2+x}\)
\(x^2+3x+x^2-x-2=2x^2+2x\)
\(2x^2+2x-2=2x^2+2x\)
\(2x^2+2x-2x^2-2x-2=0\)
\(-2\ne0\) Nên phuwong trình vô nghiệm. (xem lại hộ)
Bài 2: Tìm x
a) Ta có: (x-2)(x-1)=x(2x+1)+2
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-3x+2-2x^2-x-2=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy: S={0;-4}
b) Ta có: \(\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0x=0\)
Vậy: S={x|\(x\in R\)}
c) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-3x^2+3x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x-3=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
d) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x+20=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\frac{10}{3}\)
Vậy: \(S=\left\{-\frac{10}{3}\right\}\)
e) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow x^3+5x^2+3x^2+2x+10-x^3-8x^2=27\)
\(\Leftrightarrow2x=27-10=17\)
hay \(x=\frac{17}{2}\)
Vậy: \(S=\left\{\frac{17}{2}\right\}\)
Answer:
\(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(2x-1\right)\)
\(=(4x^2+4x+1)+(4x^2-4x+1)-2(4x^2-1)\)
\(=4x^2+4x+1+4x^2-4x+1-8x^2+2\)
\(=(4x^2+4x^2-8x^2)+(4x-4x)+(1+1+2)\)
\(=4\)
\((x-1)^3-(x+2)(x^2-2x+4)+3(x-1)(x+1)\)
\(=(x^3-3x^2+3x-1)-(x^3+8)+3(x^2-1)\)
\(=x^3-3x^2+3x-1-x^3-8+3x^2-3\)
\(=(x^3-x^3)+(-3x^2+3x^2)+3x+(-1-8-3)\)
\(=3x-12\)
A = \(\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)\)
A = \(x^2-6x+9-4x^2+1=-3x^2-6x+10\)
B = \(\left(2x-3\right)^2-\left(x-1\right)\left(2x+1\right)\)
B = \(4x^2-12x+9-2x^2-x+2x+1\)
B = \(2x^2-11x+10\)
C = \(4x\left(x-3\right)^2-\left(4-2x\right)^2\)
C = \(4x\left(x^2-6x+9\right)-16+16x-4x^2\)
C = \(4x^3-24x^2+36x-16+16x-4x^2\)
C = \(4x^3-28x^2+52x-16\)
D = \(3x\left(x-1\right)\left(x-2\right)-x\left(2x-1\right)^2\)
D = \(\left(3x^2-3x\right)\left(x-2\right)-x\left(2x-1\right)^2\)
D = \(3x^3-6x^2-3x^2+6x-x\left(4x^2-4x+1\right)\)
D = \(3x^3-9x^2+6x-4x^3+4x^2-x\)
D = \(-x^3-5x^2+5x\)
(x-2)(2x+1)+x(1-2x)
= 2x^2 - 4x + x - 2 + x - 2x^2
= -2x - 2