K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

vì x-2017>=0

=>x-2014+x-2015+x-2016=x-2017

<=>2x=4028

<=>x=2014

30 tháng 6 2020

PT đã cho tương đương với:

\(\left(\frac{x}{2017}+1\right)+\left(\frac{x+1}{2016}+1\right)=\left(\frac{x+2}{2015}+1\right)+\left(\frac{x+3}{2014}+1\right)\)

\(\Leftrightarrow\frac{x+2017}{2017}+\frac{x+2017}{2016}=\frac{x+2017}{2015}+\frac{x+2017}{2014}\)

\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2017}+\frac{1}{2016}\right)=\left(x+2017\right)\left(\frac{1}{2015}+\frac{1}{2014}\right)\)

\(\Leftrightarrow x+2017=0\Leftrightarrow x=-2017\)

Sai một chút rồi kìa em

16 tháng 7 2017

\(x=2014\)

16 tháng 7 2017

Ta có:

\(\dfrac{x}{2014}+\dfrac{x+1}{2015}+\dfrac{x+2}{2016}+\dfrac{x+3}{2017}+\dfrac{x+4}{2018}=5\)

\(\Leftrightarrow\left(\dfrac{x}{2014}-1\right)+\left(\dfrac{x+1}{2015}-1\right)+\left(\dfrac{x+2}{2016}-1\right)+\left(\dfrac{x+3}{2017}-1\right)+\left(\dfrac{x+4}{2018}-1\right)=0\)\(\Leftrightarrow\dfrac{x-2014}{2014}+\dfrac{x-2014}{2015}+\dfrac{x-2014}{2016}+\dfrac{x-2014}{2017}+\dfrac{x-2014}{2018}=0\)\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)=0\) (1)

\(\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}>0\) (2)

Từ (1) và (2) => \(x-2014=0\) \(\Leftrightarrow x=2014\)

4 tháng 11 2016

Điều kiện x \(\ge0\)từ đó ta có

x + 2015 + x + 2016 + x + 2017 = 6x 

<=> x = 2016

4 tháng 11 2016

Ta có \(\left|x+2015\right|+\left|x+2016\right|+\left|x+2017\right|\ge0\Rightarrow6x\ge0\Rightarrow x\ge0\)

=> \(\left|x+2015\right|+\left|x+2016\right|+\left|x+2017\right|=3x+6048=6x\Rightarrow3x=6048\Rightarrow x=2016\)

Vậy x=2016

4 tháng 11 2016

Ta có:

\(\left|x+2015\right|\ge0\)

\(\left|x+2016\right|\ge0\)

\(\left|x+2017\right|\ge0\)

\(\Rightarrow\left|x+2015\right|+\left|x+2016\right|+\left|x+2017\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x\right|=x\)

\(\Rightarrow\left|x+2015\right|+\left|x+2016\right|+\left|x+2017\right|=\left(x+2015\right)+\left(x+2016\right)+\left(x+2017\right)=6x\)

\(\Rightarrow3x+6048=6x\)

\(\Rightarrow3x=6048\)

\(\Rightarrow x=2016\)

Vậy \(x=2016\)

 

21 tháng 3 2020

\(\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2015}{5}+\frac{x+2016}{4}+\frac{x+2017}{3}\)

\(\Leftrightarrow\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}-\frac{x+2015}{5}-\frac{x+2016}{4}-\frac{x+2017}{3}=0\)

\(\Leftrightarrow\left(\frac{x+5}{2015}+1\right)+\left(\frac{x+4}{2016}+1\right)+\left(\frac{x+3}{2017}+1\right)-\left(\frac{x+2015}{5}+1\right)-\left(\frac{x+2016}{4}+1\right)\)

\(-\left(\frac{x+2017}{3}+1\right)=0\)

\(\Leftrightarrow\frac{x+2020}{2015}+\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{5}-\frac{x+2020}{4}-\frac{x+2020}{3}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)

\(\Leftrightarrow x+2020=0\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)

<=> x=-2020

Vậy x=-2020

10 tháng 6 2020

Giải phương trình: (3x-2)(x-1)^2(3x+8)=-16

15 tháng 3 2016

(x+2/2014)+1 + (x+1/2015)+1 = (x+2016)+1 + (x-1/2017)+1

(x+2016/2014) + (x+2016/2015) - (x+2016/2016) - (x-2016/2017)=0

=>(x+2016)(1/2014+1/2015-1/2016-1/2017)

vì 1/2014+1/2015-1/2016-1/2017 luôn khác 0 => x+2016=0

=> x=-2016

23 tháng 9 2016

\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)

\(\Leftrightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=0\)

\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)

\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)

Có: \(\frac{1}{2016}+\frac{1}{2015}+...+1\ne0\)

\(\Rightarrow x-2017=0\)

\(\Rightarrow x=2017\)

23 tháng 9 2016

<=> \(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+....+\frac{x-2016}{1}-2016=0\)\(=0\)

<=> \(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)+...+\left(\frac{x-2016}{1}-1\right)=0\)

<=> \(\frac{x-2017}{2016}+\frac{x-2017}{2015}+...+\frac{x-2017}{1}=0\)

<=> \(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}\right)=0\)

<=> \(x-2017=0\)\(\left(do\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}>0\right)\)

<=> \(x=2017\)

Vậy x = 2017

đúng thì