K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2019

Thay 2015= x+1 , ta có

f(2014)=...........

tự làm nốt nha mk lười lắm sorry

thay x=2014 vào ta có:

f(2014)=20142014-2015.20142013+2015.20142012-2015.20142011+...-2015.2014+2015

=20142014-(2014+1)20142013+(2014+1).20142012-(2014+1).20142011+...-(2014+1).2014+2014+1

=20142014-20142014-20142013+20142013+20142012-20142012-20142011+...-20142-2014+2014+1

=1

16 tháng 1 2018

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|2014-x\right|+\left|2015-x\right|+\left|x-2013\right|\)

Ta có: \(\left\{{}\begin{matrix}\left|x-2011\right|\ge x-2011\\\left|x-2012\right|\ge x-2012\\\left|2014-x\right|\ge2014-x\\\left|2015-x\right|\ge2015-x\end{matrix}\right.\)

\(A\ge x-2011+x-2012+2014-x+2015-x+\left|x-2013\right|\)

\(A\ge6+\left|x-2013\right|\ge6\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x\ge2011\\x\ge2012\\x\le2014\\x\le2015\end{matrix}\right.\)\(x=2013\)

\(\Rightarrow\left\{{}\begin{matrix}2012\le x\le2014\\x=2013\end{matrix}\right.\Leftrightarrow x=2013\)

Vậy....

25 tháng 2 2017

để Anhỏ nhất => x=2013 mình nghĩ thế thôi

12 tháng 1 2020

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)

Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)

\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)

Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2011\le x\le2015\)

Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)

\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2012\le x\le2014\)

Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)

Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)

                      \(\Leftrightarrow x=2013\)

Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)

Hay \(A\ge6\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)

Vậy \(A_{min}=6\Leftrightarrow x=2013\)

3 tháng 3 2016

x = 2014 => x + 1 = 2015

=> f(2014) = x2014 - (x + 1).x2013 + (x + 1).x2012 - ... - (x + 1).x + x + 1

= x2014 - x2014 - x2013 + x2013 + x2012 - ... - x2 - x + x + 1

= 1

3 tháng 3 2016

minh moi hoc lop 5

29 tháng 11 2015

x=2013

=>x+1=2014

bạn tự thay 2014=x+1 vào B òi rút gọn là xong