K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left(\left|x-2011\right|+\left|x-2015\right|\right)+\left(\left|x-2012\right|+\left|x-2014\right|\right)+\left|x-2013\right|\)

Đặt \(B=\left|x-2011\right|+\left|x-2015\right|\)

\(=\left|x-2011\right|+\left|2015-x\right|\ge\left|x-2011+2015-x\right|=4\left(1\right)\)

Dấu"=" xảy ra \(\Leftrightarrow\left(x-2011\right)\left(2015-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2011\ge0\\2015-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2011< 0\\2015-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2011\\x\le2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2011\\x>2015\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2011\le x\le2015\)

Đặt \(C=\left|x-2012\right|+\left|x-2014\right|\)

\(=\left|x-2012\right|+\left|2014-x\right|\ge\left|x-2012+2014-x\right|=2\left(2\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left(x-2012\right)\left(2014-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-2012\ge0\\2014-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2012< 0\\2014-x< 0\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le2014\end{cases}}\)hoặc\(\hept{\begin{cases}x< 2012\\x>2014\end{cases}\left(loai\right)}\)

\(\Leftrightarrow2012\le x\le2014\)

Ta có: \(\left|x-2013\right|\ge0;\forall x\left(3\right)\)

Dấu"="Xảy ra \(\Leftrightarrow\left|x-2013\right|=0\)

                      \(\Leftrightarrow x=2013\)

Từ (1),(2) và (3) \(\Rightarrow B+C+\left|x-2013\right|\ge6\)

Hay \(A\ge6\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}2011\le x\le2015\\2012\le x\le2014\\x=2013\end{cases}}\)\(\Leftrightarrow x=2013\)

Vậy \(A_{min}=6\Leftrightarrow x=2013\)

11 tháng 3 2017

A=6 nhé

X=2016

11 tháng 3 2017

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|=\left|x-2014\right|+\left(\left|x-2013\right|+\left|2015-x\right|\right)\)

\(\Leftrightarrow A\ge\left|x-2014\right|+\left|x-2013+2015-x\right|=\left|x-2014\right|+2\ge2\)

Dấu "=" xảy ra <=> \(\left(x-2013\right)\left(2015-x\right)\ge0\) và \(\left|x-2014\right|=0\)

\(\Leftrightarrow2013\le x\le2015\) và \(x=2014\) (thỏa mãn)

Vậy \(A_{min}=2\) tại \(x=2014\)

20 tháng 8 2019

Ta có: A = |x - 2011| + |x - 200|

=> A = |x - 2011| + |200 - x| \(\ge\)|x - 2011 + 200  - x| = |-1811| = 1811

Dấu "=" xảy ra <=> (x - 2011)(200 - x) \(\ge\)0

=> \(200\le x\le2011\)

Vậy MinA = 1811 <=> \(200\le x\le2011\)

Ta có: B = |x - 2015| + |x - 2013|

=> B = |x - 2015| + |2013 - x| \(\ge\)|x - 2015 + 2013 - x| = |-2| = 2

Dấu "=" xảy ra <=> (x - 2015)(2013 - x) \(\ge\)0

=> \(2013\le x\le2015\)

vậy MinB = 2 <=> \(2013\le x\le2015\)

25 tháng 11 2016

Ta có: A = |x-2013|+|x-2014|+|x-2015|

Vì \(\left|x-2013\right|\ge0;\left|x-2014\right|\ge0;\left|x-2015\right|\ge0\)

\(\Rightarrow\hept{\begin{cases}x-2013=0\\x-2014=0\\x-2015=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=2014\\x=2015\end{cases}}}\)

Vậy x không có giá trị vì x không thể cùng lúc có tới 3 giá trị khác nhau

\(\Rightarrow x\in\theta\)

25 tháng 11 2016

A =2 khi x=2013;2014;2015

15 tháng 1 2016

ai giúp vs

 

16 tháng 1 2018

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|2014-x\right|+\left|2015-x\right|+\left|x-2013\right|\)

Ta có: \(\left\{{}\begin{matrix}\left|x-2011\right|\ge x-2011\\\left|x-2012\right|\ge x-2012\\\left|2014-x\right|\ge2014-x\\\left|2015-x\right|\ge2015-x\end{matrix}\right.\)

\(A\ge x-2011+x-2012+2014-x+2015-x+\left|x-2013\right|\)

\(A\ge6+\left|x-2013\right|\ge6\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x\ge2011\\x\ge2012\\x\le2014\\x\le2015\end{matrix}\right.\)\(x=2013\)

\(\Rightarrow\left\{{}\begin{matrix}2012\le x\le2014\\x=2013\end{matrix}\right.\Leftrightarrow x=2013\)

Vậy....

25 tháng 2 2017

để Anhỏ nhất => x=2013 mình nghĩ thế thôi

20 tháng 3 2019

\(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)

\(\Leftrightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)

\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}=\frac{x+2014}{2012}+\frac{x+2014}{2013}\)

\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}-\frac{x+2014}{2012}-\frac{x+2014}{2013}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

V...

23 tháng 5 2017

Ta có :

x = 2013 => x + 1 = 2014

x2013 - 2014.x2012 + 2014.x2011 - 2010 + 2014x - 2014

= x2013 - (x + 1).x2012 + (x + 1).x2011 - 2010 + (x + 1)x - 2014

= x2013 - x2013 - x2012 + x2012 + x2011 - 2010 + x2 + x - 2014

= x2011 + x2 - x - 4024

Làm thì thấy nó có vấn đề ?????

23 tháng 5 2017

ta có : x = 2013

=> x + 1 = 2014

Thay 2014 = x + 1 vào biểu thức , sau đó phân phối , là ra

8 tháng 6 2016

vì /2014-x/ lớn hơn hoặc bằng 0 tương tự với các số còn lại 

để A có giá trị nhỏ nhất thì các số này nhỏ nhất mà nhỏ nhất thì x lớn nhất 

vậy x=2014 

=> A= 0+1+2=3

8 tháng 6 2016

 | 2014 - x | + | 2015 - x | + | 2016 - x |> | 2014 - x + 2015 - x + 2016 - x |

| 2014 - x + 2015 - x + 2016 - x | = | 2014 + 2015 + 2016 - x - x - x |

                                                = | 6045 - 3x |

đề A có giá trị nhỏ nhất thì | 6045 - 3x | phải có giá trị nhỏ nhất 

suy ra  6045 = 3x

           6045 : 3 =x 

                2015 = x

thay x vào A

 A = | 2014 - 2015 | + | 2015 - 2015 | + | 2016 - 2015 |

A = 1 + 0 + 1

A = 2 

vậy min A = 2 

khi x = 2015