K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

p là số nguyên tố p>3 nên p có dạng 3k+1 hoặc 3k-1.

Với p=3k+1 ta có;

\(p^2-1=\left(3k+1\right)^2-1=9k^2+6k+1-1=9k^2+6k=3k\left(3k+2\right)\)

Với p=3k-1 ta có

\(p^2-1=\left(3k11\right)^2-1=9k^2-6k+1-1=9k^2-6k=3k\left(3k-2\right)\)

24 tháng 6 2017

.p nguyên tố > 3  <=> p\(⋮\)3\(\Rightarrow\)p2 - 1\(⋮\)3

.p ngt lẻ chia 8 dư 1 \(\Rightarrow\)p2 - 1\(⋮\)8

Vì 8, 3 nguyên tố cùng nhau nên p2 -1 \(⋮\)24

10 tháng 11 2018

vì n là số nguyên tố ,n>3 nên n có dạng: 3k+1 hoặc 3k+2

với n=3k+1 thì

\(\left(n-1\right)\left(n+1\right)=\)\(\left(3k +1-1\right)\left(3k+1+1\right)=\)\(3k\left(3k+2\right)⋮3\)(1)

với n=3k+2 thì

\(\left(n-1\right)\left(n+1\right)=\)\(\left(3k+2+1\right)\left(3k+2-1\right)=\)\(\left(3k+3\right)\left(3k+1\right)=\)\(3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

vì n là số nguyên tố lớn hơn 3 nên n là số lẻ nên n có dạng 2m+1

n=2m+1 thì

\(\left(n+1\right)\left(n-1\right)=\left(2m+1+1\right)\left(2m+1-1\right)\)\(=\left(2m+2\right)2m=2.2m\left(m+1\right)\)\(4m\left(m+1\right)⋮8\)(vì m(m+1) là hai sô tự nhiên liên tiếp nên tồn tại một số chia hết cho 2 nhân 4 nữa là chia hết cho 8)      (3)

mà (8,3)=1

từ (1),(2),(3) được đpcm

15 tháng 11 2018

vì n>3 nên n có dạng n=3k+1 hoặc n=3k+2
với n=3k+1 thì (n+1)(n-1)=(3k+2)3k chia hết cho 3
với n=3k+2 thì (n+1)(n-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố n>3 thì (n+1)(n-1) chia hết cho 3 (1)
mặt khác vì n>3 nên n là số lẻ =>n+1; n-1 là 2 số chẵn liên tiếp
=>trong hai số n+1; n-1 tồn tại một số là bội của 4
=> (n+1)(n-1) chia hết cho 8 (2)
từ (1) và (2) => (n+1)(n-1) chia hết cho 24 với mọi số nguyên tố n>3

25 tháng 11 2015

p2 − 1 = (p + 1) (p − 1)

trước hết p là số lẻ nêm p‐1 và p+1 là 2 số chẵn liên tiếp nên chia hết cho 2*4=8  

mặt khác p>3 nên p‐1 hoặc p+1 chia hết cho 3

﴾3;8﴿=1 nên suy ra đpcm 

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

14 tháng 2 2016

khó @gmail.com

13 tháng 11 2017

p = 24 >21

17 tháng 5 2017

Vì p là số nguyên tố lớn hơn 3

=> p không chia hết cho 2 và không chia hết cho 3

Với p không chia hết cho 2

=> (p - 1) , (p + 1) đều là số chẵn liên tiếp 

=> (p - 1).(p + 1) chia hết cho 8                (1)

Mặt khác :

Với p không chia hết cho 3

=> p có hai dạng (3k + 1 và 3k + 2)

Xét p = 3k + 1 thì p - 1 chia hết 3 => (p - 1)(p + 1) chia hết cho 3                 (2)

Xét p = 3k + 2 thì p + 1 chia hết cho 3 => (p - 1)(p + 1) chia hết cho 3                (3)

Từ tất cả các ý (1) ; (2) ; (3)

=> Với p là số nguyên tố lớn hơn 3

thì (p - 1)(p + 1) chia hết cho 24