Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\equiv-1\left(mod3\right)\Rightarrow2^{2^n}\equiv1\left(mod3\right)\)
\(4\equiv1\left(mod3\right)\Rightarrow4^n\equiv1\left(mod3\right)\)
\(16\equiv1\left(mod3\right)\)
\(\Rightarrow a=2^{2^n}+4^n+16\equiv1+1+1\equiv0\left(mod3\right)\)
Vậy \(a⋮3,\forall n\inℤ^+\)
có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với
\(P=n^3\left(n^2-7\right)^2-36\)
\(P=n\left[n\left(n^27\right)^2-36\right]\)
\(P=n\left[\left(n^3-7n\right)^2-6^2\right]\)
\(P=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(P=\left(n-3\right)\left(x-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
M luôn luôn chia hết cho 3 , cho 5 , cho 7. Các số này đôi một nguyên tố cùng nhau nên B chia hết cho 105