K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2020

\(=\sqrt{3}\left(\sqrt{3}sina+cosa\right)\) 

\(=\sqrt{3}\cdot2\left(\frac{\sqrt{3}}{2}sina+\frac{1}{2}cosa\right)\) 

\(=2\sqrt{3}\left(cos30sina+sin30cosa\right)\) 

\(=2\sqrt{3}sin\left(a+30\right)\) 

Ta có \(-1\le sin\left(a+30\right)\le1\) 

\(-2\sqrt{3}\le2\sqrt{3}sin\left(a+30\right)\le2\sqrt{3}\)                   

P đạt GTLN 

\(\Leftrightarrow2\sqrt{3}sin\left(a+30\right)=2\sqrt{3}\) 

\(sin\left(a+30\right)=1\) 

\(a+30=90+k360\) ( vì a góc nhọn nên bỏ k 360 độ đi )             

\(a+30=90\)     

\(a=60\)

Vậy P dạt GTLN là \(2\sqrt{3}\) \(\Leftrightarrow a=60\)

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

23 tháng 9 2018

Ta có:

\(sin^2a+cos^2a=1\Leftrightarrow sin^2a+\left(\frac{1}{3}\right)^2=1\Leftrightarrow sin^2a=\frac{8}{9}\Rightarrow sina=\frac{2\sqrt{2}}{3}.\)

\(B=\frac{sin\alpha-3cosa}{sina+2cosa}=\frac{\frac{2\sqrt{2}}{3}-3.\frac{1}{3}}{\frac{2\sqrt{2}}{3}+2.\frac{1}{3}}=\frac{7-5\sqrt{2}}{2}\)

26 tháng 7 2017

Ta có:

\(\hept{\begin{cases}3sina+cosa=2\\sin^2a+cos^2a=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}cosa=2-3sina\left(1\right)\\sin^2a+\left(2-3sina\right)^2=1\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow10sin^2a-12sina+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}sina=\frac{3}{5}+\frac{\sqrt{6}}{10}\\sina=\frac{3}{5}-\frac{\sqrt{6}}{10}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}cosa=\frac{1}{5}-\frac{3.\sqrt{6}}{10}\left(l\right)\\cosa=\frac{1}{5}+\frac{3.\sqrt{6}}{10}\end{cases}}\)

Thế vô tính tiếp

13 tháng 2 2022

\(tan\alpha=\dfrac{1}{3}\Rightarrow\dfrac{sin\alpha}{cos\alpha}=\dfrac{1}{3}\Rightarrow cos\alpha=3sin\alpha\)

Thay cosa=3sina vào A, được:

\(A=\dfrac{sin^2a+9sin^2a}{sin^2a+9sin^2a+6sin^2a}=\dfrac{10sin^2a}{16sin^2a}=\dfrac{5}{8}\)

30 tháng 11 2019

\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha=1-2.\frac{1}{4^2}=\frac{7}{8}\)

9 tháng 1 2017

Câu 2 đề sai, phải là tìm \(max\) bạn nhé.

Đặt \(a=\sin x,b=\cos x\) thì \(P\left(x\right)=3a+\sqrt{3}b\) với \(a^2+b^2=1\)

(Tư tưởng Cauchy-Schwarz quá rõ)

Ta có \(\left(a^2+b^2\right)\left(9+3\right)\ge\left(3a+\sqrt{3}b\right)^2=P^2\left(x\right)\)

Suy ra \(P\left(x\right)\le2\sqrt{3}\). Đẳng thức xảy ra tại \(x=60\) độ.

Câu 1 để mình suy nghĩ sau.

8 tháng 12 2019

\(\text{A = 3 s i n α + 4 c o s α }\)

\(\rightarrow A^2=\left(3sina+4cos\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=5^2\)

\(\rightarrow-5\le A\le5\)

\(\rightarrow Max_A=5\leftrightarrow\frac{sin\alpha}{3}=\frac{cos\alpha}{4}\left(\alpha< 90^o\right)\)

\(\rightarrow tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{3}{4}\rightarrow\text{a r c t a n }\frac{3}{4}\)