Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Điều kiện x ∉ {\(\frac{5}{3};\frac{1}{7}\)}
\(\sqrt{3x-5}=\sqrt{7x-1}\)
\(\left(\sqrt{3x-5}\right)^2=\left(\sqrt{7x-1}\right)^2\)
\(\left|3x-5\right|=\left|7x-1\right|\)
\(3x-5=7x-1\)
\(-4x=4\) => x = -1
1)
a) \(6=\sqrt{36}< \sqrt{40}\)
b) \(3=\sqrt{9}< \sqrt{10}\)
c) \(2\sqrt{3}< 2\sqrt{4}=4\)
d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)
e) \(7=\sqrt{49}< \sqrt{50}\)
2)
a) \(x\ge0\)
b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)
c) \(5-a\ge0\Leftrightarrow a\le5\)
d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)
e) \(-3< x< 1\)
f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)
g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)
\(\left(x+2\right)\left(5-2x\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2\ge0\\5-2x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2\le0\\5-2x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-2\\x\le\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-2\\x\ge\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\) (Loại TH2) \(\Leftrightarrow\dfrac{5}{2}\ge x\ge-2\)
\(d.\sqrt{\dfrac{2x+3}{7-x}-1}\)
\(\dfrac{2x+3}{7-x}-1\ge0\)
\(\Leftrightarrow\dfrac{2x+3-7+x}{7-x}\ge0\)
\(\Leftrightarrow\dfrac{3x-4}{7-x}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-4\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-4\le0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{4}{3}\\x< 7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{4}{3}\\x>7\end{matrix}\right.\end{matrix}\right.\) (loại TH2)
\(\Leftrightarrow7>x\ge\dfrac{4}{3}\)
bài này mk sẽ chỉ cho bạn cách lm dể hiều nhất . kèm theo đó mk sẽ giả 1 câu để lm mẫu cho bn nha :)
đối với dạng biểu thức :
+) \(\dfrac{a}{b}\) thì \(b\ne0\)
+) \(\sqrt{a}\) thì \(a\ge0\)
+) \(\dfrac{a}{\sqrt{b}}\) thì \(b>0\)
vd: câu d)
để \(\sqrt{\dfrac{2}{x-1}}\) có nghĩa thì \(\left\{{}\begin{matrix}x-1\ne0\\\dfrac{2}{x-1}\ge0\end{matrix}\right.\Leftrightarrow x-1>0\Leftrightarrow x>1\)
vậy \(x>1\) thì \(\sqrt{\dfrac{2}{x-1}}\) có nghĩa
Bài này mình sẽ giảng cho bạn cách làm dể hiều nhất và kèm theo đó mình sẽ giải 1 câu để làm mẫu cho bạn nha :))))
Đối với dạng biểu thức :
+) abab thì b≠0b≠0
+) √aa thì a≥0a≥0
+) a√bab thì b>0b>0
Vd: câu d)
để √2x−12x−1 có nghĩa thì ⎧⎨⎩x−1≠02x−1≥0⇔x−1>0⇔x>1{x−1≠02x−1≥0⇔x−1>0⇔x>1
Vậy thì x>1x>1 thì √2x−12x−1 có nghĩa
Chúc bạn học tốt nhen :)))
a) \(\sqrt{\dfrac{a}{3}}\) có nghĩa khi: \(\dfrac{a}{3}\ge0\Leftrightarrow a\ge0\)
Vậy \(a\ge0\) thì \(\sqrt{\dfrac{a}{3}}\) xác định
b) \(\sqrt{-5a}\) có nghĩa khi \(-5a\ge0\Leftrightarrow a\le0\)
Vậy \(a\le0\) thì \(\sqrt{-5a}\) xác định
c) \(\sqrt{4-a}\) có nghĩa khi \(4-a\ge0\Leftrightarrow-a\ge-4\Leftrightarrow a\le4\)
Vậy \(a\le4\) thì \(\sqrt{4-a}\) xác định
a: ĐKXĐ: \(a\ge0\)
b: ĐKXĐ: \(a\le0\)
c: ĐKXĐ: \(a\le4\)