K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P^2< =361\)

=>-19<=P<=19

mà P là các số nguyên tố

nên \(P\in\left\{2;3;5;7;11;13;17;19\right\}\)

24 tháng 11 2019

1.

a) A={90;100;110;...;240}

b) B={x thuộc N | 30<x<=45}

2.a)n=1 b)n=0

3. đề sai 

24 tháng 11 2016

A = {6,7,8,9,10,12,...}

-6<=x<=6

=>A={-6;-5;-4;-3;-2;-1;...;4;5;6}

23 tháng 2 2017

x+y+z=45

23 tháng 2 2017

k cho mình đi

26 tháng 11 2019

A={1,2,3,6}

B={72,144}

C={1,2}

D=(\(-\infty;2\)}

ý d mik ko chắc lắm ^^

7 tháng 1 2016

n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số 

Vì vậy: n2+2015 là hợp số

7 tháng 1 2016

-Vì n là số nguyên tố lớn 3  nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)

Với n =3k+1:

n2+2015=(3k+1)2+2015

             =(3k+1).(3k+1)+2015

             =3k(3k+1)+(3k+1)+2015

             =9k2+3k+3k+1+2015

            =9k2+6k+2016

Ta có:

9k2 chia hết cho 3

6k chia hết cho 3

2016 chia hết cho 3

=> 9k2+6k+2016 chia hết cho 3

Mà 9k2+6k+2016 > 3

=> 9k2+6k+2016 là hợp số 

=>n2+2015 là hợp số (1)

Với n=3k+2:

n2+2015=(3k+2)2+2015

             =(3k+2).(3k+2)+2015

             =3k(3k+2)+2(3k+2)+2015

             =9k2+6k+6k+4+2015

            =9k2+12k+2019

Ta có:

9k2 chia hết cho 3

12k chia hết cho 3

2019 chia hết cho 3

=> 9k2+12k+2019 chia hết cho 3

Mà 9k2+12k+2019 > 3

=> 9k2+12k+2019 là hợp số

=>n2+2015 là hợp số (2)

Từ (1) và (2) suy ra : n2+2015 là hợp số

Vậy n2+2015 là hợp số

nhớ tick ủng hộ mình !