Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không hiểu đề mà nếu ko sai thì xyx=100x+10y+x=101x+10
nếu đúng thì dưới tương tự
b, yxy5 = 1000y+100x+10y+ 5
= (1000+100)y+ 100x +5
= 1100y+100x+5
bạn ấn vào đúng 0 sẽ ra đáp án mình giải
mình làm bài này rồi
xyx và yxy5 có gạch ngang trên đầu
xyx = 100x + 10y + x = 101x + 10y
yxy5 = 1000y + 100x + 10y + 5 = 1010y + 100x + 5
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Có : \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\)( áp dụng dãy tỉ số bằng nhau)
\(=\dfrac{111...11.\left(9a+b\right)}{111..11.10b}\)(có n chữ số 1 trong số 111..111)
\(\dfrac{999..99a+111..11b}{111..110b}=\dfrac{a}{c}=\dfrac{999..99a+a+111..11b}{111..110b+c}=\dfrac{100...000a+111...11b}{111..110b+c}\)=\(\dfrac{\overline{abbb...bb}}{\overline{bbb..bbc}}=\dfrac{a}{c}\)
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\) hay \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
\(\left(10a+b\right)\left(b+c\right)=\left(a+b\right)\left(10b+c\right)\)
\(10ab+b^2+10ac+bc=10ab+10b^2+ac+bc\)
\(9ac=9b^2\)
\(ac=b^2\)
\(\frac{a}{b}=\frac{b}{c}\)
\(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)=\(1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)
\(\frac{9a}{a+b}=\frac{9b}{b+c}=>\frac{9a}{9b}=\frac{a+b}{b+c}\)
\(\frac{a}{b}=\frac{a+b}{b+c}=\frac{a+b-a}{b+c-b}=\frac{b}{c}\)
=>\(\frac{a}{b}=\frac{b}{c}\)
nếu đúng thì k nka