Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(a-b^2\right)\left(a+b^2\right)=a^2-b^4\)
b) \(\left(a^2+2a-3\right)\left(a^2+2a+3\right)=\left(a^2+2a\right)^2-9\)
c) \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)=a^2-\left(2a+3\right)^2\)
d) \(\left(a^2-2a+3\right)\left(a^2+2a+3\right)=9-\left(a^2-2a\right)^2\)
e) \(\left(-a^2-2a+3\right)\left(-a^2-2a+3\right)=\left(-a^2-2a+3\right)^2\)
g) \(\left(a^2+2a+3\right)\left(a^2-2a+3\right)=\left(a^2+3\right)^2-4a^2\)
f) \(\left(a^2+2a\right)\left(2a-a^2\right)=4a^2-a^4\)
Bài 2 :
a) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)
b) \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+yx+y^2+yz+zx+zy+z^2=x^2+2xy+2yz+2xz+y^2+z^2\)
c) \(\left(x-y+z\right)^2=\left(x-y+z\right)\left(x-y+z\right)=x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=x^2+y^2+z^2-2xy+2xz-2yz\)d) \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=\left(x-2y\right)^3\)
e) \(\left(x-y-z\right)^2=\left(x-y-z\right)\left(x-y-z\right)=x^2-xy-xz-xy+y^2+yz-xz+yz+z^2=x^2-2xy-2xz+2yz+y^2+z^2\)
a: \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)\)
\(=\left[a^2+\left(2a+3\right)\right]\left[a^2-\left(2a+3\right)\right]\)
\(=\left(a^2\right)^2-\left(2a+3\right)^2\)
\(=a^4-\left(2a+3\right)^2\)
b: \(\left(-a^2-2a+3\right)^2\)
\(=\left(a^2+2a-3\right)^2\)
\(=a^4+4a^2+9+4a^3-18a-6a^2\)
\(=a^4+4a^3-2a^2-18a+9\)
c: \(\left(x-y-z\right)^2\)
\(=x^2-2x\left(y+z\right)+\left(y+z\right)^2\)
\(=x^2-2xy-2xz+y^2+2yz+z^2\)
d: \(\left(x+y+z\right)\left(x-y-z\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=x^2-y^2-2yz-z^2\)
a: \(=a^2-b^4\)
b: \(=\left(a^2+2a\right)^2-9\)
c: \(=a^2-\left(2a+3\right)^2\)
d: \(=a^4-\left(2a-3\right)^2\)
e: \(=\left(-a^2-2a+3\right)^2\)
g: \(=4a^2-a^4\)
a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2
b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3
c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3
g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2
1:
a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)
b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)
Bài 2 :
a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)
\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)
a: \(=y^2-9\)
b: \(=m^3+n^3\)
c: \(=8-a^3\)
d: \(=\left(a-b-c-a+b-c\right)\left(a-b-c+a-b+c\right)\)
\(=-2c\cdot\left(2a-2b\right)\)
\(=-4ac+4bc\)
f: \(=\left(1-x^3\right)\left(1+x^3\right)=1-x^6\)
a) Áp dụng hằng đẳng thức : \(a^2-b^2+\left(a-b\right)\left(a+b\right)\)
Ta có ; \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)
\(=\left[\left(a^2+2a\right)+3\right]\left[\left(a^2+2a\right)-3\right]\)
\(=\left(a^2+2a\right)^2-3^2\)
\(=\left(a^2+2a\right)^2-9\)