Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2y^4+2xy^2+1=\left(xy^2\right)^2+2xy^2+1=\left(xy^2+1\right)^2\)
\(a,\left(x+3\right)^2\)
\(b,\left(x+\frac{1}{2}\right)^2\)
\(c,\left(xy^2+1\right)^2\)
a) x2+6x+9=x2+2.x.3+32=(x+3)2
b) x2+x+\(\dfrac{1}{4}\)=x2+2.x.\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)=(x+\(\dfrac{1}{2}\))2
c) 2xy2+x2y4+1=(xy2)2+2.xy2+1=(xy2+1)2
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
a) \(9x^2+6x+1=\left(3x+1\right)^2\)
b)\(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
c)\(x^2y^4-2xy^2+1=\left(xy^2-1\right)^2\)
d) \(x^2+\frac{2}{3}x+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2\)
a) 9x2 + 6x + 1 = ( 3x + 1 )2
b) x2 - x + 1/4 = ( x - 1/2)2
c) x2 . y4 - 2xy2 + 1 = ( xy2 - 1 ) 2
d) x2 + 2/3x + 1/9 = (x+1/3)2
a) \(x^2+6x+9=\left(x+3\right)^2\)
b) \(2xy^2+x^2y^4+1=x^2y^4+2xy^2+1=\left(xy^2+1\right)^2\)
c) \(x^2+x+\frac{1}{4}=x^2.2.\frac{1}{2}x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2\)
1, \(x^2+2xy+y^2=\left(x+y\right)^2\)
2, \(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)
3, \(x^2+5x+\dfrac{25}{4}=x^2+2\cdot\dfrac{5}{2}\cdot x+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)
4, \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x\cdot1+1^2=\left(4x-1\right)^2\)
5, \(x^2+x+\dfrac{1}{4}=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
1: =(x+y)^2
2: =(2x+3)^2
3: =(x+5/2)^2
4: =(4x-1)^2
5: =(x+1/2)^2
6: =(x-3/2)^2
7: =(x+1)^3
8: =(1/2x+1)^2
9: =(3y-1/3)^3
10: =(2x+y)^3