Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)...\left(x^{32}-x^{16}+1\right)\)
\(A\left(x^2+x+1\right)=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)...\left(x^{32}-x^{16}+1\right)\)
(Giải thích: \(\left(x^2+x+1\right)\left(x^2-x+1\right)=\left(x^2+1\right)^2-x^2=x^4+x^2+1\))
\(A\left(x^2+x+1\right)=\left(x^8+x^4+1\right)\left(x^8-x^4+1\right)...\left(x^{32}-x^{16}+1\right)\)
.....
\(A\left(x^2+x+1\right)=x^{64}-x^{32}+1\)
\(\Rightarrow A=\frac{x^{64}-x^{32}+1}{x^2+x+1}\)
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
A=(2+1)x(22+1)x(24+1)x(28+1)x(216+1)
= 3.5.17.257.65537
3. ( 22 + 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1
= ( 22 - 1 ).( 22 + 1 ).( 24 + 1 ).( 28 + 1 )....( 264 + 1 ) + 1
= ( 24 - 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1
= ( 28 + 1 ).....( 264 + 1 ) + 1
= ( 264 - 1 ).( 264 + 1 ) + 1
= 2128 - 1 + 1
= 2128
8.( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 32 - 1 ).( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 34 - 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 38 - 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 316 - 1 )......( 3128 + 1 ) + 1
= ( 3128 - 1 ).( 3128 + 1 ) + 1
= 3256 - 1 + 1
= 3256
a) Ta có : (x + 5)2 - 16 = 0
=> (x + 5)2 = 16
=> (x + 5)2 = (-4) ; 4
\(\Leftrightarrow\orbr{\begin{cases}x+5=-4\\x+5=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=-1\end{cases}}\)