K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

3. ( 22 + 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1

= ( 22 - 1 ).( 22 + 1 ).( 24 + 1 ).( 28 + 1 )....( 264 + 1 ) + 1

= ( 24 - 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1

= ( 28 + 1 ).....( 264 + 1 )  + 1

= ( 264 - 1 ).( 264 + 1 ) + 1

=  2128 - 1 + 1

= 2128

8 tháng 7 2019

8.( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1

= ( 32 - 1 ).( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1

= ( 34 - 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1

= ( 38 - 1 ).( 38 + 1 )....( 3128 + 1 ) + 1

= ( 316 - 1 )......( 3128 + 1 ) + 1

= ( 3128 - 1 ).( 3128 + 1 ) + 1

=  3256 - 1 + 1

= 3256

4 tháng 8 2018

Bài 1:

a) \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)

\(\Rightarrow x^3-3x^2+3x-1+2^3-x^3+3x^2+6x=17\)

\(\Rightarrow9x+7=17\)

\(\Rightarrow9x=17-7=10\)

\(\Rightarrow x=\dfrac{10}{9}\)

b) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(\Rightarrow x^3+2^3-x^3+2x=15\)

\(\Rightarrow8+2x=15\)

\(\Rightarrow2x=15-8=7\)

\(\Rightarrow x=\dfrac{7}{2}\)

c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)

\(\Rightarrow x^3-3x^2.3+3x.3^2-3^3-x^3+3^3+9\left(x^2+2x+1\right)=15\)

\(\Rightarrow-9x^2+27x+9x^2+18x+9=15\)

\(\Rightarrow45x+9=15\)

\(\Rightarrow45x=6\)

\(\Rightarrow x=\dfrac{6}{45}=\dfrac{2}{15}\)

d) \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Rightarrow x\left(x^2-5^2\right)-x^3-2^3=3\)

\(\Rightarrow x^3-25x-x^3-8=3\)

\(\Rightarrow-25x-8=3\)

\(\Rightarrow-25x=3+8=11\)

\(\Rightarrow x=-\dfrac{11}{25}\)

Bài 2:

a) Ta có:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^8-1\right)\left(2^8+1\right)\)

\(B=2^{16}-1\)

Vì 216 - 1 < 216

=> B < A

b) Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{128}-1\right)\)

Vì 1/2( 3128 - 1) < 3128 - 1

=> A < B

13 tháng 11 2017

a) \(\left(x+3\right)\left(x-1\right)-2\left(x+3\right)^2+\left(x-4\right)\left(x+4\right)\)

\(=x^2-x+3x-3-2\left(x^2+6x+9\right)+x^2-16\)

\(=2x^2+2x-19-2x^2-12x-18\)

\(=-10x-37\)

b) \(\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{\left(5^2-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{24}\)

\(=\frac{5^{32}-1}{24}\)

13 tháng 11 2017

a) (x+3)(x-1)-2(x+302)+(x-4)(x+4)=x2+2x-3-2x-1800+x2-16=2x2-1819

b)...=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)=(5^4-1)(5^4+1)(5^8+1)(5^16+1)/(5^2-1)

=(5^8-1)(5^8+1)(5^16+1)/(5^2-1)=(5^16-1)(5^16+1)/(5^2-1)=(5^32-1)/(5^2-1)

2 tháng 10 2019

câu 1 có sai đề ko z

2 tháng 9 2017

Bài : 1 Ta có : (x - 2)3 + 6(x + 1)2 - x3 + 12 = 0 

=> x3 - 6x2 + 12x - 8 + 6(x2 + 2x + 1) - x3 + 12 = 0

=> x3 - 6x2 + 12x - 8 + 6x2 + 12x + 6 - x3 + 12 = 0

=> 24x - 10 = 0

=> 24x = 10

=> x = 5/12

Vạy x = 5/12

2 tháng 9 2017

Bài 4 : Ta có : M = x2 + 6x - 1

=> M = x2 + 6x + 9 - 10

=> M = (x + 3)2 - 10

Vì : \(\left(x+3\right)^2\ge0\forall x\)

Nên : M = (x + 3)2 - 10 \(\ge-10\forall x\)

Vậy Mmin = -10 khi x = -3