K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Bài 1:

a) \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)

\(\Rightarrow x^3-3x^2+3x-1+2^3-x^3+3x^2+6x=17\)

\(\Rightarrow9x+7=17\)

\(\Rightarrow9x=17-7=10\)

\(\Rightarrow x=\dfrac{10}{9}\)

b) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(\Rightarrow x^3+2^3-x^3+2x=15\)

\(\Rightarrow8+2x=15\)

\(\Rightarrow2x=15-8=7\)

\(\Rightarrow x=\dfrac{7}{2}\)

c) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)

\(\Rightarrow x^3-3x^2.3+3x.3^2-3^3-x^3+3^3+9\left(x^2+2x+1\right)=15\)

\(\Rightarrow-9x^2+27x+9x^2+18x+9=15\)

\(\Rightarrow45x+9=15\)

\(\Rightarrow45x=6\)

\(\Rightarrow x=\dfrac{6}{45}=\dfrac{2}{15}\)

d) \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Rightarrow x\left(x^2-5^2\right)-x^3-2^3=3\)

\(\Rightarrow x^3-25x-x^3-8=3\)

\(\Rightarrow-25x-8=3\)

\(\Rightarrow-25x=3+8=11\)

\(\Rightarrow x=-\dfrac{11}{25}\)

Bài 2:

a) Ta có:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(B=\left(2^8-1\right)\left(2^8+1\right)\)

\(B=2^{16}-1\)

Vì 216 - 1 < 216

=> B < A

b) Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(A=\dfrac{1}{2}\left(3^{128}-1\right)\)

Vì 1/2( 3128 - 1) < 3128 - 1

=> A < B

4 tháng 10 2020

Bài 2 : 

a. A = 2 ( x3 + y3 ) - 3 ( x2 + y2 ) với x + y = 1

=> A = 2 ( x + y ) ( x2 - xy + y2 ) - 3 [ ( x + y )- 2xy ]

=> A = 2 [ ( x + y )- 3xy ] - 3 ( 1 - 2xy )

=> A = 2 ( 1 - 3xy ) - 3 + 6xy

=> A = 2 - 6xy - 3 + 6xy

=> A = - 1

B = x3 + y3 + 3xy với x + y = 1

=> B = ( x+ 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

=> B = ( x + y )3 - 3xy ( x + y - 1 )

=> B = 13 - 3xy . 0

=> B = 1

4 tháng 10 2020

Bài 1.

a) ( x - 1 )3 + ( 2 - x )( 4 + 2x + x2 ) + 3x( x + 2 ) = 16

<=> x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x = 16

<=> 9x + 7 = 16

<=> 9x = 9

<=> x = 1

b) ( x + 2 )( x2 - 2x + 4 ) - x( x2 - 2 ) = 15

<=> x3 + 8 - x3 + 2x = 15

<=> 2x + 8 = 15

<=> 2x = 7

<=> x = 7/2

c) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 15

<=> ( x - 3 )[ ( x - 3 )2 - ( x2 + 3x + 9 ) + 9( x2 + 2x + 1 ) = 15

<=> ( x - 3 )( x2 - 6x + 9 - x2 - 3x - 9 ) + 9x2 + 18x + 9 = 15

<=> ( x - 3 ).(-9x) + 9x2 + 18x + 9 = 15

<=> -9x2 + 27x + 9x2 + 18x + 9 = 15

<=> 45x + 9 = 15

<=> 45x = 6

<=> x = 6/45 = 2/15

d) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 3

<=> x( x2 - 25 ) - ( x3 + 8 ) = 3

<=> x3 - 25x - x3 - 8 = 3

<=> -25x - 8 = 3

<=. -25x = 11

<=> x = -11/25

Bài 2.

a) A = 2( x3 + y3 ) - 3( x2 + y2 )

= 2( x + y )( x2 - xy + y2 ) - 3x2 - 3y2

= 2( x2 - xy + y2 ) - 3x2 - 3y2

= 2x2 - 2xy + 2y2 - 3x2 - 3y2

= -x2 - 2xy - y2

= -( x2 + 2xy + y2 )

= -( x + y )2

= -(1)2 = -1

b) B = x3 + y3 + 3xy 

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 1 - 3xy.0

= 1

\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)

\(2x+8=15\)

\(2x=7\)

\(x=\frac{7}{2}\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)

\(\Leftrightarrow9x+7=17\)

\(\Leftrightarrow9x=10\)

\(\Leftrightarrow x=\frac{10}{9}\)

25 tháng 7 2018

\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)

\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)

\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)

\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)

\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)

\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)

\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)

\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)

4 tháng 9 2019

\(1a,P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right).\)

\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24=0\)

\(b,Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)

\(=-6x^2-2+6x^2-6=-8\)

Bài 1:

a) 5(x-3)-4=2(x-1)

\(\Leftrightarrow5x-15-4=2x-2\)

\(\Leftrightarrow5x-19-2x+2=0\)

\(\Leftrightarrow3x-17=0\)

\(\Leftrightarrow3x=17\)

\(\Leftrightarrow x=\frac{17}{3}\)

Vậy: \(x=\frac{17}{3}\)

b) 5-(6-x)=4(3-2x)

\(\Leftrightarrow5-6+x=12-8x\)

\(\Leftrightarrow-1+x-12+8x=0\)

\(\Leftrightarrow-13+9x=0\)

\(\Leftrightarrow9x=13\)

\(\Leftrightarrow x=\frac{13}{9}\)

Vậy: \(x=\frac{13}{9}\)

c) (3x+5)(2x+1)=(6x-2)(x-3)

\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow33x=1\)

\(\Leftrightarrow x=\frac{1}{33}\)

Vậy: \(x=\frac{1}{33}\)

d) \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+4x+4+2x-8=x^2-2x-4x+8\)

\(\Leftrightarrow x^2+6x-4=x^2-6x+8\)

\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)

\(\Leftrightarrow12x-12=0\)

\(\Leftrightarrow x=1\)

Vậy:x=1

Bài 2:

a)\(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)

\(\Leftrightarrow\frac{x}{3}-\frac{5x}{6}-\frac{5x}{4}-\frac{x}{4}+5=0\)

\(\Leftrightarrow\frac{4x}{12}-\frac{10x}{12}-\frac{15x}{12}-\frac{3x}{12}+\frac{60}{12}=0\)

\(\Leftrightarrow4x-10x-15x-3x+60=0\)

\(\Leftrightarrow-24x+60=0\)

\(\Leftrightarrow-24x=-60\)

\(\Leftrightarrow x=\frac{5}{2}\)

Vậy: \(x=\frac{5}{2}\)

b) \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow\frac{8x-3}{4}-\frac{3x-2}{2}-\frac{2x-1}{2}-\frac{x+3}{4}=0\)

\(\Leftrightarrow\frac{8x-3}{4}-\frac{2\left(3x-2\right)}{4}-\frac{2\left(2x-1\right)}{4}-\frac{x+3}{4}=0\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)-2\left(2x-1\right)-\left(x+3\right)=0\)

\(\Leftrightarrow8x-3-6x+4-4x+2-x-3=0\)

\(\Leftrightarrow-3x=0\)

\(\Leftrightarrow x=0\)

Vậy: x=0

c) \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)

\(\Leftrightarrow\frac{15\left(x-1\right)}{30}-\frac{2\left(x+1\right)}{30}-\frac{5\left(2x-13\right)}{30}=0\)

\(\Leftrightarrow15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)=0\)

\(\Leftrightarrow15x-15-2x-2-10x+65=0\)

\(\Leftrightarrow3x+48=0\)

\(\Leftrightarrow3x=-48\)

\(\Leftrightarrow x=-16\)

Vậy: x=-16

d) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

\(\Leftrightarrow\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}-\frac{1-x}{2}+2=0\)

\(\Leftrightarrow\frac{9\left(3-x\right)}{24}+\frac{16\left(5-x\right)}{24}-\frac{12\left(1-x\right)}{24}+\frac{48}{24}=0\)

\(\Leftrightarrow9\left(3-x\right)+16\left(5-x\right)-12\left(1-x\right)+48=0\)

\(\Leftrightarrow27-9x+80-16x-12+12x+48=0\)

\(\Leftrightarrow-13x+143=0\)

\(\Leftrightarrow-13x=-143\)

\(\Leftrightarrow x=11\)

Vậy: x=11

e) \(\frac{3\left(5x-2\right)}{4}-2=\frac{7x}{3}-5\left(x-7\right)\)

\(\Leftrightarrow\frac{3\left(5x-2\right)}{4}-2-\frac{7x}{3}+5\left(x-7\right)=0\)

\(\Leftrightarrow\frac{9\left(5x-2\right)}{12}-\frac{24}{12}-\frac{28x}{12}+\frac{60\left(x-7\right)}{12}=0\)

\(\Leftrightarrow9\left(5x-2\right)-24-28x+60\left(x-7\right)=0\)

\(\Leftrightarrow45x-18-24-28x+60x-420=0\)

\(\Leftrightarrow77x-462=0\)

\(\Leftrightarrow77x=462\)

\(\Leftrightarrow x=6\)

Vậy:x=6

Bài 3:

a) \(\left(5x-4\right)\left(4x+6\right)=0\)

\(\Leftrightarrow\left(5x-4\right)\cdot2\cdot\left(2x+3\right)=0\)

\(2\ne0\)

nên \(\left[{}\begin{matrix}5x-4=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=\frac{-3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{4}{5};-\frac{3}{2}\right\}\)

b) \(\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\\x=\frac{-4}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{5;\frac{3}{2};\frac{-4}{3}\right\}\)

c) \(\left(2x+1\right)\left(x^2+2\right)=0\)

Ta có: \(\left(2x+1\right)\left(x^2+2\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(2x+1=0\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy: \(x=\frac{-1}{2}\)

d) \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow4\left(2x-1\right)\left(x^2+2x+2\right)=0\)

Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta lại có \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1\ne0\forall x\)(3)

Ta có: \(4\ne0\)(4)

Từ (3) và (4) suy ra

2x-1=0

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy: \(x=\frac{1}{2}\)

Bài 4:

a) \(\left(x-2\right)\left(2x+3\right)=\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow2x^2+3x-4x-6=x^2-2x-x+2\)

\(\Leftrightarrow2x^2-x-6=x^2-3x+2\)

\(\Leftrightarrow2x^2-x-6-x^2+3x-2=0\)

\(\Leftrightarrow x^2+2x-8=0\)

\(\Leftrightarrow x^2+2x+1-9=0\)

\(\Leftrightarrow\left(x+1\right)^2-3^2=0\)

\(\Leftrightarrow\left(x+1-3\right)\left(x+1+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-4\right\}\)

b) \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)-\left(x-5\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\)

c) \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)

d) \(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)

\(\Leftrightarrow x^2+4x+4-9\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2+4x+4-9x^2+36x-36=0\)

\(\Leftrightarrow-8x^2+40x-32=0\)

\(\Leftrightarrow-\left(8x^2-40x+32\right)=0\)

\(\Leftrightarrow-8\left(x^2-5x+4\right)=0\)

\(-8\ne0\)

nên \(x^2-5x+4=0\)

\(\Leftrightarrow x^2-x-4x+4=0\)

\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{1;4\right\}\)

e) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow4\left(4x^2+28x+49\right)-9\left(x^2+6x+9\right)=0\)

\(\Leftrightarrow16x^2+112x+196-9x^2-54x-81=0\)

\(\Leftrightarrow7x^2+58x+115=0\)

\(\Leftrightarrow7x^2+23x+35x+115=0\)

\(\Leftrightarrow x\left(7x+23\right)+5\left(7x+23\right)=0\)

\(\Leftrightarrow\left(7x+23\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=-23\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-23}{7};-5\right\}\)

Bài 5:

a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left[\left(3x-2\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-2\\x=-1\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{2}{3};-1;\frac{1}{2}\right\}\)

b) \(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow2x^2-2x+x^2+2x-3=0\)

\(\Leftrightarrow3x^2-3=0\)

\(\Leftrightarrow3\left(x^2-1\right)=0\)

\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{1;-1\right\}\)

c) \(x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2-x+1\right)=0\)(5)

Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta lại có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\ne0\forall x\)(6)

Từ (5) và (6) suy ra

\(\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy: x=-1

18 tháng 2 2020

ko khó đâu, chủ yếu nhát làm

27 tháng 7 2016

Hỏi đáp Toán

27 tháng 7 2016

Mình biết nhưng ý mình là mình đang học bài những hằng đẳng thức đáng nhớ , nếu như mà học bài đơn thức nhân đa thức thì mình biết làm rồi không cần hỏi . tại bài mình mới học chưa được hiểu cho lắm nên nhờ mấy bạn giúp mình làm 1 câu thôi ạ

24 tháng 8 2020

a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 16

x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x - 16 = 0

9x - 9 = 0

9x = 9

x = 1

Vậy x ∈ {1}

b) ( x + 2)(x2 - 2x + 4) - x(x2 - 2) = 16

x3 + 8 - x3 + 2x - 16 = 0

2x - 8 = 0

2x = 8

x = 4

Vậy x ∈ {4}

c) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17

x3 - 25x - x3 - 8 - 17 = 0

-25x - 25 = 0

-25x = 25

x = -1

Vậy x ∈ {1}

d) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15

x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 - 15 = 0

45x - 6 = 0

45x = 6

x = \(\frac{2}{15}\)

Vậy x ∈ {\(\frac{2}{15}\)}