K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

Xét ptr hoành độ của `(P)` và `(D)` có:

        `x^2/3=2x-3`

`<=>x^2=6x-9`

`<=>x^2-6x+9=0`

`<=>(x-3)^2=0`

`<=>x-3=0<=>x=3`

     `=>y=2.3-3=3`

Vậy tọa độ giao điểm của `(P)` và `(D)` là: `(3;3)`

1:

a: loading...

b: PTHĐGĐ là:

x^2+2x-3=0

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

=>y=9 hoặc y=1

b: Phương trình hoành độ giao điểm là:

\(\dfrac{-1}{2}x^2-4x+16=0\)

\(\Leftrightarrow x^2\cdot\dfrac{1}{2}+4x-16=0\)

\(\Leftrightarrow x^2+8x-32=0\)

\(\Leftrightarrow\left(x+4\right)^2=48\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\sqrt{3}-4\\x=-4\sqrt{3}-4\end{matrix}\right.\)

Khi \(x=4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\cdot\left(4\sqrt{3}-4\right)^2=-32+16\sqrt{3}\)

Khi \(x=-4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\left(-4\sqrt{3}-4\right)^2=-32-16\sqrt{3}\)

b: Để hai đường song song thì

\(\left\{{}\begin{matrix}m-1=-1\\m+3< >1\end{matrix}\right.\Leftrightarrow m=0\)

15 tháng 10 2023

Bạn tự vẽ nhé.

\(a,\) 2 đồ thị hàm số \(y=2x,y=-3x+5\) giao nhau khi và chỉ khi :

\(2x=-3x+5\\ \Leftrightarrow5x=5\\ \Leftrightarrow x=1\)

Thay \(x=1\) vào \(y=2x\Leftrightarrow y=2\)

Vậy giao điểm của 2 đồ thị là \(\left(1;2\right)\)

\(b,\) 2 đồ thị hàm số \(y=3x+2,y=-\dfrac{1}{2}x+1\) giao nhau khi và chỉ khi :

\(3x+2=-\dfrac{1}{2}x+1\\ \Leftrightarrow\dfrac{7}{2}x=-1\\ \Leftrightarrow x=-\dfrac{2}{7}\)

Thay \(x=-\dfrac{2}{7}\) vào \(y=3x+2\Rightarrow y=\dfrac{8}{7}\)

Vậy giao điểm của 2 đồ thị là \(\left(-\dfrac{2}{7};\dfrac{8}{7}\right)\)

\(c,\) 2 đồ thị hàm số \(y=\dfrac{3}{2}x-2,y=-\dfrac{1}{2}x+2\) giao nhau khi và chỉ khi :

\(\dfrac{3}{2}x-2=-\dfrac{1}{2}x+2\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)

Thay \(x=2\) vào \(y=\dfrac{3}{2}x-2\Rightarrow y=1\)

Vậy giao điểm của 2 đồ thị là \(\left(2;1\right)\)

\(d,\) 2 đồ thị hàm số \(y=-2x+5,y=x+2\) giao nhau khi và chỉ khi :

\(-2x+5=x+2\\ \Leftrightarrow-3x=-3\\ \Leftrightarrow x=1\)

Thay \(x=1\) vào \(y=x+2\Rightarrow y=3\)

Vậy giao điểm của 2 đồ thị là \(\left(1;3\right)\)

29 tháng 12 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}\dfrac{3}{2}x-1=\dfrac{2}{3}x+1\\y=\dfrac{2}{3}x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{5}\\y=\dfrac{13}{5}\end{matrix}\right.\)

7 tháng 3 2022

a, bạn tự vẽ 

b, Hoành độ giao điểm tm pt 

\(\dfrac{x^2}{2}=\dfrac{x}{2}+3\Leftrightarrow x^2-x-6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow x=3;x=-2\)

hay \(x_A=3;x_B=-2\)

\(\Rightarrow y_A=\dfrac{9}{2};y_B=2\)

Vậy (P) cắt (d) tại A(3;9/2) ; B(-2;2) 

c, Ta có \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\dfrac{5\sqrt{5}}{2}\)

Theo Pytago ta có \(OA=\sqrt{\left(\dfrac{9}{2}\right)^2+3^2}=\dfrac{3\sqrt{13}}{2}\)

Theo Pytago ta có \(OB=\sqrt{2^2+2^2}=2\sqrt{2}\)

Chu vi tam giác ABC là 

\(AB+OA+OB=\dfrac{5\sqrt{5}+3\sqrt{13}+4\sqrt{2}}{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 1 2024

Lời giải:

b. PT hoành độ giao điểm:

$2x^2=\frac{3}{2}x+1$

$\Leftrightarrow 4x^2-3x-2=0$

$\Leftrightarrow x=\frac{3\pm \sqrt{41}}{8}$

$x=\frac{3+\sqrt{41}}{8}\Rightarrow y=\frac{3}{2}x+1=\frac{25+3\sqrt{41}}{16}$. Ta có giao điểm $(\frac{3+\sqrt{41}}{8}; \frac{25+3\sqrt{41}}{16})$

$x=\frac{3-\sqrt{41}}{8}\Rightarrow y=\frac{25-3\sqrt{41}}{16}$. Ta có giao điểm $(\frac{3-\sqrt{41}}{8}; \frac{25-3\sqrt{41}}{16})$

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2