Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
a, Với m =1 , pt thành:
y = \(\dfrac{-2}{3}x-\dfrac{1}{3}\)(d')
Hoành độ giao điểm là nghiệm của phương trình:
\(-x+4=\dfrac{-2}{3}x-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{-1}{3}x=\dfrac{-13}{3}\Leftrightarrow x=13\)
thay x = 13 vào (d) ta được \(y=-9\)\(\Rightarrow A\left(13;-9\right)\)
vậy điểm \(A\left(13;-9\right)\)là giao điểm của (d) và (d')
b, Gọi điểm B(x1;y1) là giao điểm của (d) và (d')
Để (d) và (d') cắt nhau tại góc phần tư thứ 1
\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\y_1>0\end{matrix}\right.\) (1)
Lại có x1 là nghiệm của phương trình: \(-x_1+4=\dfrac{-2}{3}x_1+\dfrac{m}{3}\)
\(\Leftrightarrow\dfrac{-1}{3}x_1=\dfrac{m}{3}-4\) \(\Leftrightarrow x_1=-m+12\) (2)
Thay x1 = -m +12 vào (d) ta được: \(y_1=-\left(-m+12\right)+4\Leftrightarrow y_1=m-8\) (3)
Thay (2) và (3) vào hệ bất phương trình (1) ta được
\(\left\{{}\begin{matrix}-m+12>0\\m-8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 12\\m>8\end{matrix}\right.\)\(\Leftrightarrow8< m< 12\)
Vậy \(8< m< 12\) thì (d) cắt (d') tại góc phần tư thứ 1
chúc bạn học tốt☺
b: Tọa độ giao là:
-1/2x+5=1/3x+1 và y=1/3x+1
=>-5/6x=-4 và y=1/3x+1
=>x=4:5/6=4*6/5=24/5 và y=1/3*24/5+1=24/15+1=8/5+1=13/5
c: Vì (d3)//(d1) nên (d3): y=-1/2x+b
Thay y=2 vào (d2), ta được:
x/3+1=2
=>x=3
Thay x=3 và y=2 vào y=-1/2x+b, ta được:
b-3/2=2
=>b=7/2
d: Thay x=24/5 và y=13/5 vào (d4), ta được:
24/5(m-3)+m+1=13/5
=>24/5m-72/5+m+1=13/5
=>29/5m-67/5=13/5
=>29/5m=80/5
=>m=80/5:29/5=80/5*5/29=80/29
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-x+2=\dfrac{1}{3}x-2\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{3}x=4\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
a, bạn tự vẽ
b, Hoành độ giao điểm tm pt
\(\dfrac{x^2}{2}=\dfrac{x}{2}+3\Leftrightarrow x^2-x-6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow x=3;x=-2\)
hay \(x_A=3;x_B=-2\)
\(\Rightarrow y_A=\dfrac{9}{2};y_B=2\)
Vậy (P) cắt (d) tại A(3;9/2) ; B(-2;2)
c, Ta có \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\dfrac{5\sqrt{5}}{2}\)
Theo Pytago ta có \(OA=\sqrt{\left(\dfrac{9}{2}\right)^2+3^2}=\dfrac{3\sqrt{13}}{2}\)
Theo Pytago ta có \(OB=\sqrt{2^2+2^2}=2\sqrt{2}\)
Chu vi tam giác ABC là
\(AB+OA+OB=\dfrac{5\sqrt{5}+3\sqrt{13}+4\sqrt{2}}{2}\)
b: Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{2}x^2=-\dfrac{1}{2}x-1\)
\(\Leftrightarrow-\dfrac{1}{2}x^2+\dfrac{1}{2}x+1=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Thay x=2 vào (P), ta được:
\(y=\dfrac{-2^2}{2}=-2\)
Thay x=-1 vào (P), ta được:
\(y=-\dfrac{1^2}{2}=-\dfrac{1}{2}\)
Bài 1:
a: Khi m=1 thì (d): y=2x+3(2-1)=2x+3
PTHĐGĐ là:
x^2-2x-3=0
=>(x-3)(x+1)=0
=>x=3 hoặc x=-1
Khi x=3 thì y=9
Khi x=-1 thì y=1
b: PTHĐGĐ là:
\(x^2-\left(m+1\right)x-3\left(2-m\right)=0\)
=>x^2-(m+1)x+3(m-2)=0
\(\text{Δ}=\left(m+1\right)^2-4\cdot3\cdot\left(m-2\right)\)
\(=m^2+2m+1-12m+24=m^2-10m+25=\left(m-5\right)^2\)
Để (P) và (d) cắt nhau tại 2 điểm phân biệt thì m-5<>0
=>m<>5
b: Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{-2}{3}x+2=x+2\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{3}{2}x-1=\dfrac{2}{3}x+1\\y=\dfrac{2}{3}x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{5}\\y=\dfrac{13}{5}\end{matrix}\right.\)