K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

a. Ta có: \(\left\{{}\begin{matrix}AB\perp BC\\SA\perp BC\end{matrix}\right.\)\(\Rightarrow BC\perp\left(SAB\right)\)

b. Ta có: \(\left\{{}\begin{matrix}AH\perp SB\\AH\perp BC\:\left(BC\perp\left(SAB\right)\right)\end{matrix}\right.\)\(\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow AH\perp SC\)

a: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

b: BK vuông góc AC

BK vuôg góc SA

=>BK vuông góc (SAC)

 

a: BC vuông góc SA

BC vuôg góc AB

=>BC vuông góc (SAB)

b: BI vuông góc SA
BI vuông góc AC

=>BI vuông góc (SAC)

20 tháng 2 2021

SA vuông góc với (ABC)=> SA vuông góc với BC

                                       mà AB vuông góc với BC ( tam giác ABC vuông) 

=> BC vg góc với (SAB)=> BC vg góc AH

                                   mà AH vg góc SB

=> AH vg góc (SBC)=> AH vg góc SC

5 tháng 5 2022

1) Ta có : \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

BC \(\perp AB;BC\perp SA\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\) \(\Rightarrow\Delta SBC\perp\) tại B 

2) \(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\) . Mà 

\(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp HK\)  \(\Rightarrow\Delta AHK\perp\) tại H 

\(\Delta SAB\perp\) tại A ; \(AH\perp SB\) có : \(AH=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{a^2}{\sqrt{2a^2}}=\dfrac{\sqrt{2}}{2}a\)

AC = \(\sqrt{AB^2+BC^2}=\sqrt{2a^2}=\sqrt{2}a\)

\(\Delta SAC\perp\) tại A có : \(AK\perp SC\) có : 

\(AK=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=\dfrac{a.\sqrt{2}a}{\sqrt{a^2+2a^2}}=\dfrac{\sqrt{6}}{3}a\)

\(HK=\sqrt{AK^2-AH^2}=\sqrt{\dfrac{2}{3}a^2-\dfrac{1}{2}a^2}=\dfrac{\sqrt{6}}{6}a\)

\(S_{AHK}=\dfrac{1}{2}HA.HK=\dfrac{1}{2}\dfrac{\sqrt{2}}{2}a.\dfrac{\sqrt{6}}{6}a=\dfrac{\sqrt{3}}{12}a^2\)

3) AH \(\perp\left(SBC\right)\Rightarrow\left(AK;\left(SBC\right)\right)=\widehat{AKH}\)

\(\Delta AHK\perp\) tại H có : \(sin\widehat{AKH}=\dfrac{AH}{AK}=\dfrac{\sqrt{2}}{2}a:\dfrac{\sqrt{6}}{3}a=\dfrac{\sqrt{3}}{2}\Rightarrow\widehat{AKH}=60^o\)