K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: CD vuông góc DA

CD vuông góc SA

=>CD vuông góc (SAD)

=>CD vuông góc SD

b: CD vuông góc AK

AK vuông góc SD

=>AK vuông góc (SCD)

=>SC vuông góc AK

BC vuông góc AH

AH vuông góc SB

=>AH vuông góc SC

=>SC vuông góc (AKH)

c: (SO;(ABCD))=(OS;OA)=góc SOA

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

b: BC vuông góc AB

BC vuông góc SA
=>BC vuông góc (SAB)

=>BC vuông góc AK

mà AK vuông góc SB

nên AK vuông góc (SBC)

 

3 tháng 2 2023

loading...  

9 tháng 12 2017

31 tháng 3 2017

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

19 tháng 4 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (BD ⊥ SA & BD ⊥ AC ⇒ BD ⊥ (SAC)

⇒ BC ⊥ SC.

b) (BC ⊥ SA & BC ⊥ AB ⇒ BC ⊥ (SAB)

⇒ (SBC) ⊥ (SAB).

c) + Xác định góc α giữa đường thẳng SC và mp(ABCD):

(C ∈(ABCD) & SA ⊥ (ABCD) ⇒ ∠[(SC,(ABCD))] = ∠(ACS) = α

+ Tính góc:

Tam tam giác vuông SCA, ta có:

tanα = SA/AC = √3/3 ⇒ α   =   30 o .

a: ta có: BC\(\perp\)AB(ABCD là hình vuông)

BC\(\perp\)SA(SA\(\perp\)(ABCD))

AB,SA cùng thuộc mp(SAB)

Do đó: BC\(\perp\)(SAB)

b: Ta có: BD\(\perp\)AC(ABCD là hình vuông)

BD\(\perp\)SA(SA\(\perp\)(ABCD))

AC,SA cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

c: Ta có: BC\(\perp\)(SAB)

AH\(\subset\)(SAB)

Do đó: BC\(\perp\)AH

Ta có: AH\(\perp\)SB

AH\(\perp\)BC

SB,BC cùng thuộc mp(SBC)

Do đó: AH\(\perp\)(SBC)

d: Ta có: AH\(\perp\)(SBC)

SC\(\subset\)(SBC)

Do đó: AH\(\perp\)SC

Ta có: CD\(\perp\)SA(SA\(\perp\)(ABCD))

CD\(\perp\)AD(ABCD là hình vuông)

SA,AD cùng thuộc mp(SAD)

Do đó: CD\(\perp\)(SAD)

=>AK\(\perp\)CD

mà AK\(\perp\)SD

và CD,SD cùng thuộc mp(SCD)

nên AK\(\perp\)(SCD)

=>AK\(\perp\)SC

Ta có: SC\(\perp\)AK

SC\(\perp\)AH

AK,AH cùng thuộc mp(AKH)

Do đó: SC\(\perp\)(AKH)

NV
25 tháng 3 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow\widehat{BSC}\) là góc giữa SC và (SAB)

\(tan\widehat{BSC}=\dfrac{BC}{SB}=\dfrac{\sqrt{10}}{5}\Rightarrow SB=\dfrac{a\sqrt{10}}{2}\)

\(\Rightarrow SA=\sqrt{SB^2-AB^2}=\dfrac{a\sqrt{6}}{2}\)

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SOA}\) là góc giữa SO và (ABCD)

\(AO=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\)

\(tan\widehat{SOA}=\dfrac{SA}{AO}=\sqrt{3}\Rightarrow\widehat{SOA}=60^0\)

 

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC