K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=-2 thì phương trình trở thành \(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

hay m<2

Theo hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-\dfrac{2}{3}\\x_1=2x_2=-\dfrac{4}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=m-1\)

\(\Leftrightarrow m-1=\dfrac{8}{9}\)

hay m=17/9(nhận)

4 tháng 2 2022

a. Thay m=-2 ta được: \(x^2+2x-2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

b. Để phương trình (*) có 2 nghiệm phân biệt thì \(\Delta=4-4\left(m-1\right)>0\Leftrightarrow1>m-1\Leftrightarrow m< 2\)

Áp dụng định lí Vi-et ta có: \(x_1+x_2=\dfrac{-2}{1}=-2\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-2x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-\dfrac{4}{3}\\x_2=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow x_1.x_2=\dfrac{m-1}{1}=\dfrac{-4}{3}.\dfrac{-2}{3}=m-1\Rightarrow m=\dfrac{17}{9}\)<2

Vậy m=\(\dfrac{17}{9}\)

 

15 tháng 4 2018

2) có 2 nghiêm khi \(\Delta^,=1-m+1>0\Rightarrow m< 2\)

1) theo đề bài ta có x1=2

    Theo viets ta có x1+x2=2 => x=1

                                   \(x_1.x_2=m-1=2\Rightarrow m=3\)

20 tháng 4 2018

Bạn làm sai rồi !

Đề cho 1 No chứ đâu phải là 2 No ?

Mình ghi tắt:[No là nghiệm]  

Thông cảm mình ghi tắt quen tay~~@~~

23 tháng 2 2019

\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)

a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)

\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\) 

\(\Leftrightarrow4>0\)(luôn đúng)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

b) Để t nghĩ tí

23 tháng 2 2019

ý b kìa ý a mình biết rồi

30 tháng 5 2021

Thay m=-1 vào pt ta được: 

\(x^2+4x-5=0\)\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Có \(ac=-5< 0\) =>Pt luôn có hai nghiệm pb trái dấu

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\2x_1-x_2=11\\x_1x_2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_1-11=2\left(m-1\right)\\x_2=2x_1-11\\x_1x_2=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{3}\\x_2=\dfrac{4m-15}{3}\\x_1x_2=-5\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{2m+9}{3}\right)\left(\dfrac{4m-15}{3}\right)=-5\)\(\Leftrightarrow8m^2+6m-90=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{15}{4}\end{matrix}\right.\)

Vậy...

a, Thay m = 2 vào pt ta được :

x2 - (2.2 + 1)x + 22 + 1 = 0

<=> x2 - 5x + 5 = 0

Ta có \(\Delta=b^2-4ac\)

= 25 - 20 = 5

=> \(\sqrt{\Delta}\) = \(\sqrt{5}\)

=> Pt có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{5}}{2}\\x_2=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)

b, Để pt (*) có hai nghiệm phân biệt

<=> \(\Delta\) \(\ge\) 0

<=> (2m - 1)2 - 4(m2 + 1) \(\ge\) 0

<=> 4m2 - 4m + 1 - 4m2 - 4 \(\ge\) 0

<=> -4m - 3 \(\ge\) 0

<=> m \(\ge\dfrac{-3}{4}\)

8 tháng 4 2017

câu b, sai nhé