K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

Gọi 3 số nguyên liên tiếp là:  a-1; a; a+1

Tổng của chúng là:

    a-1 + a + a+1 = 3a  chia hết cho 6

=>  a chia hết cho 2

Tổng lập phương của chúng là:

  A = (a-1)3 + a3 + (a+1)3 = 3a(a2 + 2)   chia hết cho 3

mà  a  chia hết cho 2; (3;2) =1

=> A chia hết cho 6

9 tháng 7 2018

a,15(3x-2y) chia het cho 17

15(3x-2y)-17(2x-y) chia het cho 17

45x-30y-34x+17y chia het cho 17

11x-13y chia het cho 17

b,5(4x+3y) chia het cho 13

5(4x+3y)-13(x+y) chia het cho 13

20x+15y-13x-13y chia het cho 13

7x+2y chia het cho 13

c,x+99y chia het cho 7

x+99y-98y chia het cho 7

x+y chia het cho 7

                                                      Bài giải    :

8.1 x+y=xy

⇒x-xy+y=0

⇒x(1-y)+(y-1)+1=0

⇒(x-1)(1-y)+1=0

⇒(x-1)(y-1)-1=0

⇒(x-1)(y-1)=1

⇒x-1, y-1 là ước của 1

⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1

⇒(x;y)=(2;2),(0;0)

 8.3. 5xy-2y²-2x²+2=0

⇔(x-2y)(y-2x)+2=0

⇔(x-2y)(2x-y)=2

⇒x-2y và 2x-y là ước của 2

Hình như tui nhầm bài thì phải???

24 tháng 9 2018

\(4n^2\left(n+2\right)+4n\left(n+2\right)=\left(n+2\right)\left(4n^2+4n\right)=4n\left(n+1\right)\left(n+2\right)\)

Đặt \(A=n\left(n+1\right)\left(n+2\right)\) ta có

+ Nếu n chẵn => A chia hết cho 2

+ Nếu n lẻ thì n+1 chia hết cho 2 => A chia hết cho 2

=> A chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => A chia hết cho 3

+ Nếu n chia 3 dư 1 thì n+2  chia hết cho 3 => A chia hết cho 3

+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => A chia hết cho 3

=> A chia hết cho 3 với mọi n

=> A đồng thời chia hết cho cả 2 và 3 với mọi n => A chia hết cho 6 với mọi n => A có thể biểu diễn thành A=6.k

=> 4A=4.6.k=24.k chia hết cho 24 (dpcm)

23 tháng 9 2018

4n2(n+2)+4n(n+2)

=4n(n+2)(n+1)

Ta có: 24=2.3.4 và ƯCLN(2,3,4)=1 nên ta chứng minh 4n(n+2)(n+1) chia hết cho 2,3 và 4

n chia cho 2 sẽ có 2 dạng là 2k và 2k+1 (k\(\in\)Z)

+) Với n = 2k thì \(n⋮2\)=> 4n(n+1)(n+2)\(⋮2\)(1)

+) Với n = 2k+1 thì n+1=2k+2

Vì 2k+2\(⋮2\)nên 4n(n+1)(n+2)\(⋮2\)(2)

Từ (1) và (2) => 4n(n+1)(n+2)\(⋮\)2 với mọi n\(\in Z\)

n chia cho 3 có 3 dạng là: 3m+1, 3m+2 và 3m

+) Với n = 3m thì n\(⋮\)3 => 4n(n+1)(n+2)​\(⋮\)3 (3)​

+) với n = 3m+1 thì n+2=3m+1+2=3m+3

Vì 3m+3​\(⋮3\) nên 4n(n+1)(n+2)​\(⋮3\)(4)

+) Với n = 3m+2 thì n+1=3m+2+1=3m+3

Vì 3m+3​\(⋮3\)nên 4n(n+1)(n+2)​\(⋮3\)(5)

Từ (3)(4)(5) => 4n(n+1)(n+2)\(⋮3\)với mọi \(n\in Z\)

Vì 4\(⋮\)4 nên 4n(n+1)(n+2)\(⋮4\)

Ta có: 4n(n+1)(n+2) chia hết cho 2,3,4

=> 4n(n+1)(n+2) \(⋮24\)với mọi \(n\in Z\)

Vậy 4n2(n+2)+4n(n+2)\(⋮24\)với mọi\(n\in Z\)

22 tháng 3 2020

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=8.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

.....

\(=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(=3^{128}-1\)

\(\Rightarrow A=\frac{3^{128}-1}{2}\)

24 tháng 7 2019

Bài 2 phải là chứng minh chia hết cho 5 chứ nhỉ 

24 tháng 7 2019

Bài 2:

\(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)

\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left[n\left(n^2-4\right)+5n\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)⋮5\)