Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một bài đã làm không xong mà bạn ra hai bài thì ............
Bài 1: Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
a, Ta có: DE//BC \(\Rightarrow\widehat{DEB}+\widehat{EBF}=180\)
mà góc EBF =90 => góc DEB =90 (1)
Chứng minh tương tự với DF//AB
\(\Rightarrow\widehat{EDF}=90;\widehat{BFD}=90\) (2)
Từ (1) và (2) => tứ giác BEDF là hình chữ nhật
a) vì ED//BC và DF//AB
Mà \(\Delta ABC\)vuông tại B
Nên \(DE\perp AB\)và \(DF\perp BC\)
Xét tứ giác BEDF có:
\(\widehat{B}=\widehat{DEB}=\widehat{DFB}=90^0\)
Vậy tứ giác BEDF là hình chữ nhật
Một bài toán hay
Bạn tự vẽ hình nhé
Ta có
Góc B = Góc C (tam giác ABC cân tại A) (1)
Tam giác BEP và tam giác FPC lần lượt cân tại E và F Vì có đường trung tuyến và trung trực trùng nhau
=> Góc EPB =Góc EBP : Góc FCP = Góc FPC (2)
Từ (1) và (2)
=> Góc EPB =Góc EBP =Góc FCP = Góc FPC
Thay Góc EPB =Góc EBP = Góc FPC Bằng góc C
+) Góc EPF = 180 độ -(2x Góc C)
+) Góc PFC=180 độ -(2x Goc C)
=> Góc EPf =Góc PFC
=> EP // AF (*)
Góc EAP= 2x Góc C (tc góc ngoài )
Mà Góc EPF+2x Góc C =180 độ
=> Góc EAP +Góc EP=180 đọ
=>AE//PF (**)
Từ (*) và (**) => EAPF là hình bình hành
B sửa lại thành PE+PF nhé
EAPF là hình bình hành => EA=FP
Mặt khác EB=EF
=>EP+FP=EA+EB=AB ( cst)
Chúc bạn hok tốt ^^
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó: E là trung điểm của AB
Xét tứ giác AIBD có
E là trung điểm của AB
E là trung điểm của ID
Do đó: AIBD là hình bình hành
mà AB\(\perp\)DI
nên AIBD là hình thoi