K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 11 2019

Ta có \(-\frac{b}{2a}=\frac{3}{2}\in\left[-2;3\right]\)

\(y\left(-2\right)=-5\) ; \(y\left(\frac{3}{2}\right)=-54\); \(y\left(3\right)=-45\)

\(\Rightarrow M=-5\) ; \(m=-54\)

29 tháng 10 2017

Đặt t=\(\sqrt{x^2-3x+4}\)
ta có t \(\in\)(\(\sqrt{2}\) ;\(2\sqrt{2}\))

suy ra y = \(t^2-4t-4\) = \(\left(t-2\right)^2-8\) \(\ge-8\)

1 tháng 11 2017

Đặt \(t=\sqrt{x^2-3x+4}\).

Ta có hàm số có dạng: \(y=t^2-4t-4\)(*) trên \(\left[1;4\right]\)

Đỉnh \(I\left(2;-8\right)\)

Hàm số đạt GTNN khi \(t=2\Leftrightarrow\sqrt{x^2-3x+4}=2\Leftrightarrow x^2-3x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

Vậy hàm số (*) đạt GTNN trên \(\left[1;4\right]\) là -8 khi x=3

22 tháng 4 2019

a) Xét \(\Delta\) = b2 - 4ac = (-m)2 - 4(2m - 4)

= m2 - 8m + 16 = ( m - 4 )2

Ta có: ( m - 4 )2 \(\ge\) 0

=> Pt luôn có nghiệm

b) Vì phương trình luôn có nghiệm nên áp dụng định lí Ta- lét:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}==m\\x_1x_2=2m-4\end{matrix}\right.\)
Xét phương trình: x12 + x22 - 9

= x12 + x22 + 2x1x2 - 2x1x2 - 9

= (x1 + x2)2 - 2x1x2 - 9

= (-m)2 - 2(2m - 4) - 9

= m2 - 4m + 8 - 9

= m2 - 4m - 1 = m2 - 4m + 4 - 5

= (m - 2)2 - 5

Xét (m - 2)2 \(\ge\) 0

=> (m - 2)2 - 5 \(\ge\) -5

Dấu " =" xảy ra khi m - 2 = 0

<=> m = 2

NV
22 tháng 4 2019

\(\Delta=m^2-8m+16=\left(m-4\right)^2\ge0\Rightarrow\) pt luôn có nghiệm

Khi đó theo Viet \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)

\(A=x_1^2+x_2^2-9=\left(x_1+x_2\right)^2-2x_1x_2-9\)

\(A=m^2-2\left(2m-4\right)-9\)

\(A=m^2-4m-1\)

\(A=\left(m-2\right)^2-5\ge-5\)

\(\Rightarrow A_{min}=-5\) khi \(m=-2\)

NV
23 tháng 2 2020

Pt đã cho có 3 nghiệm pb khi nó có một nghiệm bằng 0

\(\Rightarrow m^2-1=0\Rightarrow m=\pm1\)

- Với \(m=1\Rightarrow-x^2=0\) chỉ có 1 nghiệm (ktm)

- Với \(m=-1\Rightarrow-2x^4+x^2=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\frac{\sqrt{2}}{2}\end{matrix}\right.\) (t/m)

Vậy \(m=-1\)

10 tháng 9 2017

Do x> 0 nên 2x >0  và  3 x > 0 .

Áp dụng bất đẳng thức Cô- si cho 2 số dương:   2 x ; 3 x

f x = 2 x + 3 x ≥ 2 . 2 x . 3 x = 2 6

Dấu “=” xảy ra khi 2 x = 3 x ⇔ x = 3 2 = 6 2 .

19 tháng 4 2021

Áp dụng BĐT Cosi, ta có:

\(\frac{a}{9}\)+\(\frac{1}{a}\)>= 2.\(\frac{1}{3}\)=\(\frac{2}{3}\)

=> a+\(\frac{1}{a}\)=\(\frac{a}{9}\)+\(\frac{8a}{9}\)+\(\frac{1}{a}\)>= \(\frac{2}{3}\)+\(\frac{8a}{9}\)>= \(\frac{2}{3}\)+\(\frac{8.3}{9}\)=\(\frac{10}{3}\)

Vậy GTNN của P là: \(\frac{10}{3}\), tại a=3

20 tháng 3 2020

\(\left\{{}\begin{matrix}3\left(x-6\right)< -3\\\frac{5x+m}{2}>7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-6< -1\\5x+m>14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< 5\\x>\frac{14-m}{5}\end{matrix}\right.\Leftrightarrow\frac{14-m}{5}< x< 5\)

Để hệ có nghiệm thì: \(\frac{14-m}{5}< 5\Leftrightarrow14-m< 25\Leftrightarrow m>-11\)

Chúc bạn học tốt nhaok