K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

Giải bài 27 trang 80 Toán 8 Tập 1 | Giải bài tập Toán 8

a) + ΔADC có: AE = ED (gt) và AK = KC (gt)

⇒ EK là đường trung bình của ΔADC

⇒ EK = CD/2

+ ΔABC có AK = KC (gt) và BF = FC (gt)

⇒ KF là đường trung bình của ΔABC

⇒ KF = AB/2.

b) Ta có: EF ≤ EK + KF = Giải bài 27 trang 80 Toán 8 Tập 1 | Giải bài tập Toán 8

(Bổ sung: Giải bài 27 trang 80 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇔ EF = EK + KF ⇔ E, F, K thẳng hàng ⇔ AB // CD)

Bài 5:

Xét ΔABC có

D là trung điểm của AB

DE//BC

Do đó: E là trung điểm của AC

Bài 4:

2: Xét hình thang ABCD có

E,F lần lượt là trung điểm của AD,BC

=>EF là đường trung bình của hình thang ABCD

=>EF//AB//CD và \(EF=\dfrac{AB+CD}{2}\)

27 tháng 9 2021

a) Xét tam giác ADC có:

E là trung điểm AD

K là trung điểm AC

=> EK là đường trung bình 

\(\Rightarrow EK=\dfrac{1}{2}CD\)

Xét tam giác ABC có:

F là trung điểm BC(gt)

K là trung điểm AC(gt)

=> KF là đường trung bình

\(\Rightarrow KF=\dfrac{1}{2}AB\)

 

27 tháng 9 2021

Sửa đề: \(CM:EF\le\dfrac{AB+CD}{2}\)

Ta có: \(EF\le EK+KF=\dfrac{1}{2}AB+\dfrac{1}{2}CD=\dfrac{AB+CD}{2}\)

a: Xét ΔADC có 

E là trung điểm của AD

K là trung điểm của AC

Do đó: EK là đường trung bình của ΔADC

Suy ra: EK//DC và \(EK=\dfrac{DC}{2}\)

Xét ΔABC có 

K là trung điểm của AC

F là trung điểm của BC

Do đó: KF là đường trung bình của ΔABC

Suy ra: KF//AB và \(KF=\dfrac{AB}{2}\)

21 tháng 4 2017

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK = CD/2

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = AB/2

b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = CD/2 + AB/2 = (AB+CD)/2

Vậy EF ≤ (AB+CD)/2

14 tháng 9 2017

27. Cho tứ giác ABCD. Gọi E, F, K theo thứ tự là trung điểm của AD, BC, AC.

a) So sánh các độ dài EK và CD, KF và AB.

b) Chứng minh rằng EF \(\le\dfrac{AB+CD}{2}\)

Bài giải:

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK =\(\dfrac{CD}{2}\)

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = \(\dfrac{AB}{2}\)

b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = \(\dfrac{CD}{2}\) + \(\dfrac{AB}{2}\) = \(\dfrac{\left(AB+CD\right)}{2}\)

Vậy EF ≤ \(\dfrac{\left(AB+CD\right)}{2}\)



24 tháng 9 2015

EK là đtbinh tam giác => EK=1/2 CD, KF=1/2 AB áp dụng Bđt trong tam giác EKF có EF< EK+KF =>EF< 1/2(AB+CD) . Khi K nằm giữa Evà F thì EF= EK+KF = 1/2(AB+CD)​ kết hợp cả 2 => đpcm

6 tháng 9 2016

bài 1 

a) Trong ∆ACD có EA = ED, KA = KC (gt)

nên EK là đường trung bình của ∆ACD

Do đó EK = CD/2

Tương tự KF là đường trung bình của ∆ABC.

Nên KF = AB/2

b) Ta có EF  ≤ EK + KF (bất đẳng thức trong ∆EFK)

Nên EF ≤ EK + KF = CD/2 + AB/2=  (AB +CD)/2

Vậy EF ≤ (AB +CD)/2

25 tháng 8 2017

   Trên tia đối của FA lấy điểm H sao cho MF=FA 

khi đó tứ giác ACMD là hình bình  hành suy ra : AD//CD do đó 

                       GOC DCM =ADC=80 do 

                          suy ra : góc BCM =BCD+DCM 

                                           BCM =40+80

                                           BCM=120

                   VÌ  ACMD là hình bình hành nên :CM =AD=BC SUY RA TAM GIÁC BCM CÂN TẠI C

                           TA CÓ GÓC BCM =120 ĐỘ ==>CMD =30 ĐỘ 

 RỒI BẠN TỰ LÀM TIẾP ĐI MÌNH GỢI Ý CHO RỒI NHA

17 tháng 10 2017

cảm ơn nha

26 tháng 11 2021

Tham khảo

nối đường chéo AC
Trong ∆ABC ta có
E là trung điểm của AB
F là trung điểm của BC
Nên EF là đường trung bình của ∆ABC
EF//=1/2AC(1)
(Sd tính chất của đng trung bình)
Chứng minh tương tự với ∆ADC
=> HG//=1/2AC(2)
Từ (1) và(2) suy ra EF//=HG
Vậy tứ giác EFGHlaf hình bình hành
Vì có một cặp đối song song và bằng nhau

26 tháng 11 2021

Sd là j z bn