K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

a, Ta có AH.AO=AB^2 ( theo hệ thức lượng)

            AM.AN=BC^2  (bạn xét tam giác ACM và ANC đồng dạng theo trường hợp g-g)

Mà AB=AC (t/c 2 tt cắt nhau) ===> AH.AO=AM.AN

26 tháng 8 2020

ựa tam giác đồng dạng thì góc nào với góc nào đấy các ae

8 tháng 5 2020

ajnomoto

a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)

nên ABOC là tứ giác nội tiếp

Tâm là trug điểm của AO

b: Xét (O) có

AB là tiếp tuýen

AC là tiếp tuyến

Do đó: AB=AC
mà OB=OC

nên OA là đường trung trực của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(1\right)\)

Xét ΔABM và ΔANB có

\(\widehat{ABM}=\widehat{ANB}\)

\(\widehat{BAM}\) chung

Do đo; ΔABM\(\sim\)ΔANB

Suy ra: AB/AN=AM/AB

hay \(AB^2=AN\cdot AM\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AO=AM\cdot AN\)

15 tháng 7 2018

a,  A B M ^ = A N B ^ = 1 2 s đ B M ⏜

Chứng minh được: ∆ABM:∆ANB (g.g) => ĐPCM

b, Chứng minh AO ^ BC áp dụng hệ thức lượng trong tam giác vuông ABO và sử dụng kết quả câu a) Þ AB2 = AH.AO

c, Chứng minh được  A B I ^ = C B I ^ B I ⏜ = C I ⏜ => BI là phân giác  A B C ^ . Mà AO là tia phân giác  B A C ^ => I là tâm đường tròn nội tiếp ∆ABC

6 tháng 5 2021

PiucRYU.png

a) Vì AB,AC là tiếp tuyến của (O) \(\Rightarrow\hept{\begin{cases}AB\perp OB\\AC\perp OC\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{ABO}=90^0\\\widehat{ACO}=90^0\end{cases}}\)

Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác ABOC

\(\Rightarrow ABOC\)nội tiếp ( dhnb )

b) Xét (O) có AB là tiếp tuyến tại B ; MB là dây cung

\(\Rightarrow\widehat{ABM}=\widehat{ANB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)

Xét tam giác ABM và tam giác ANB có:

\(\hept{\begin{cases}\widehat{BAN}chung\\\widehat{ABM}=\widehat{ANB}\left(cmt\right)\end{cases}\Rightarrow\Delta ABM~\Delta ANB\left(g-g\right)}\)

\(\Rightarrow\frac{AB}{AM}=\frac{AN}{AB}\Rightarrow AB^2=AM.AN\left(1\right)\)

c)  Gọi H là giao điểm của BC và AO 

Xét tam giác ABH và tam giác AOB có:

\(\hept{\begin{cases}\widehat{BAO}chung\\\widehat{AHB}=\widehat{ABO}=90^0\end{cases}}\Rightarrow\Delta ABH~\Delta AOB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AH}=\frac{AO}{AB}\Rightarrow AB^2=AO.AH\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AM.AN=AH.AO\)

\(\Rightarrow\frac{AM}{AH}=\frac{AO}{AN}\)

Xét tam giác AMH và tam giác AON có:

\(\hept{\begin{cases}\widehat{NAO}chung\\\frac{AM}{AH}=\frac{AO}{AN}\left(cmt\right)\end{cases}\Rightarrow\Delta AMH~\Delta AON\left(c-g-c\right)}\)

\(\Rightarrow\widehat{AHM}=\widehat{ANO}\)

Mà \(\widehat{AHM}+\widehat{MHO}=180^0\)

\(\Rightarrow\widehat{ANO}+\widehat{MHO}=180^0\)

Xét tứ giác MHON có 

\(\widehat{ANO}+\widehat{MHO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác  MHON

\(\Rightarrow MHON\)nội tiếp ( dhnb ) 

\(\Rightarrow\widehat{NMO}=\widehat{NHO}\left(3\right)\)

Vì H là giao điểm của BC và AO ( h.vẽ )

Mà \(AB,AC\)là tiếp tuyến của (O)

\(\Rightarrow BC\perp OA\)

\(\Rightarrow\widehat{BHO}=90^0\)

Vì NF là tiếp tuyến của (O) tại N

\(\Rightarrow\widehat{ÒNF}=90^0\)

Xét tứ giác FHON có:\(\widehat{FHO}+\widehat{FNO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác FHON

=> FHON nội tiếp ( dhnb )

\(\Rightarrow\widehat{NHO}=\widehat{NFO}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{NMO}=\widehat{NFO}\)

\(\Rightarrow FMON\)nội tiếp (dhnb)

\(\Rightarrow\widehat{FMO}+\widehat{FNO}=180^0\)

\(\Rightarrow\widehat{FMO}=90^0\)

\(\Rightarrow FM\perp OM\)

\(\Rightarrow FM\)là tiếp tuyến của (O) 

d)  Vì E thuộc đường tròn ngoại tiếp tam giác MNO 

\(\Rightarrow E\)thuộc đường tròn đường kính OF

\(\Rightarrow\widehat{OEF}=90^0\)

+) Vì E thuộc đường tròn ngoại tiếp tứ giác ABOC hay E thuộc đường tròn đường kính AO

\(\Rightarrow\widehat{AEO}=90^0\)

\(\Rightarrow\widehat{OEF}+\widehat{AEO}=180^0\)

\(\Rightarrow A,E,F\)thẳng hàng

Lại có vì góc AEO= 90 độ \(\Rightarrow OE\perp AF\left(5\right)\)

Gọi K là trung điểm của MN

\(\Rightarrow OF\perp MN\)

\(\Rightarrow AK\perp OF\)

Xét tam giác AOF có: \(\hept{\begin{cases}AK\perp OF\\FH\perp AO\end{cases}}\)mà AK cắt FH tại P

=> P là trực tâm của tam giác AOF

\(\Rightarrow OP\perp AF\left(6\right)\)

Từ (5) và (6) \(\Rightarrow O,E,P\)thẳng hàng ( đpcm )

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0