K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

a) ĐS : P6 = 6! = 720 (số).

b) Số tự nhiên chẵn cần lập có dạng , với a, b, c, d, e, f là các phần tử khác nhau của tập {1, 2, 3, 4, 5, 6}, có kể đến thứ tự, f chia hết cho 2.

Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:

Hành động 1: Chọn chữ số f ở hàng đơn vị, với f chia hết cho2. Có 3 cách để thực hiện hành động này.

Hành động 2: Chọn một hoán vị của 5 chữ số còn lại (khác với chữ số f đã chọn) để đặt vào các vị trí a, b, c, d, e (theo thứ tự đó). Có 5! cách để thực hieenjj hành động này.

Theo quy tắc nhân suy ra số các cách để lập được số tự nhiên kể trên là

3 . 5! = 360 (cách).

Qua trên suy ra trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, co 360 số tự nhiên chẵn.

Tương tự ta tìm được trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, có 360 số tự nhiên lẻ.

c) Trong các số tự nhiên có 6 chữ số khác nhau lập được từ các chữ số đã cho, những số tự nhiên bé hơn 432000 hoặc là những số tự nhiên có chữ số hàng trăm nghìn nhỏ hơn 4 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục nghìn nhỏ hơn 3 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục ngìn là 3 và chữ số hàng nghìn nhỏ hơn 2. Do đó từ các chữ số đã cho, để lập được số tự nhiên có 6 chữ số khác nhau, bé hơn 432000 (ta gọi là số tự nhiên cần lập), phải thực hiện một hành động trong ba hành dộng loại trừ nhau đôi một sau đây:

Hành động 1: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn nhỏ hơn 4.

Có 3 cách để chọn chữ số hàng trăm nghìn và có 5! cách để chọn một hoán vị của 5 chữ số (đã cho) còn lại, rồi đặt vào các vị trí từ hàng chục nghìn đến hàng đơn vị.

Theo quy tắc nhân suy ra: Số các cách để thực hiện hành động này là:

3 . 5! = 360 (cách).

Hành động 2: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4 và chữ số hàng chục nghìn nhỏ hơn 3.

Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:

1 . 2 . 4! = 48 (cách).

Hành động 3: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4, chữ số hàng chục nghìn là chữ số 3, chữ số hàng nghìn nhỏ hơn 2.

Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:

1 . 1 . 1 . 3! = 6 (cách)

Theo quy tắc cộng suy ra số các cách để từ các chữ số khác nhau, lập được từ các chữ số đã cho, có 414 số bé hơn 432000

3 tháng 4 2017

a) ĐS : P6 = 6! = 720 (số).

b) Số tự nhiên chẵn cần lập có dạng , với a, b, c, d, e, f là các phần tử khác nhau của tập {1, 2, 3, 4, 5, 6}, có kể đến thứ tự, f chia hết cho 2.

Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:

Hành động 1: Chọn chữ số f ở hàng đơn vị, với f chia hết cho2. Có 3 cách để thực hiện hành động này.

Hành động 2: Chọn một hoán vị của 5 chữ số còn lại (khác với chữ số f đã chọn) để đặt vào các vị trí a, b, c, d, e (theo thứ tự đó). Có 5! cách để thực hieenjj hành động này.

Theo quy tắc nhân suy ra số các cách để lập được số tự nhiên kể trên là

3 . 5! = 360 (cách).

Qua trên suy ra trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, co 360 số tự nhiên chẵn.

Tương tự ta tìm được trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, có 360 số tự nhiên lẻ.

c) Trong các số tự nhiên có 6 chữ số khác nhau lập được từ các chữ số đã cho, những số tự nhiên bé hơn 432000 hoặc là những số tự nhiên có chữ số hàng trăm nghìn nhỏ hơn 4 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục nghìn nhỏ hơn 3 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục ngìn là 3 và chữ số hàng nghìn nhỏ hơn 2. Do đó từ các chữ số đã cho, để lập được số tự nhiên có 6 chữ số khác nhau, bé hơn 432000 (ta gọi là số tự nhiên cần lập), phải thực hiện một hành động trong ba hành dộng loại trừ nhau đôi một sau đây:

Hành động 1: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn nhỏ hơn 4.

Có 3 cách để chọn chữ số hàng trăm nghìn và có 5! cách để chọn một hoán vị của 5 chữ số (đã cho) còn lại, rồi đặt vào các vị trí từ hàng chục nghìn đến hàng đơn vị.

Theo quy tắc nhân suy ra: Số các cách để thực hiện hành động này là:

3 . 5! = 360 (cách).

Hành động 2: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4 và chữ số hàng chục nghìn nhỏ hơn 3.

Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:

1 . 2 . 4! = 48 (cách).

Hành động 3: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4, chữ số hàng chục nghìn là chữ số 3, chữ số hàng nghìn nhỏ hơn 2.

Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:

1 . 1 . 1 . 3! = 6 (cách)

Theo quy tắc cộng suy ra số các cách để từ các chữ số khác nhau, lập được từ các chữ số đã cho, có 414 số bé hơn 432000.



9 tháng 6 2018

Đặt A = {1, 2, 3, 4, 5, 6}.

n(A) = 6.

Việc lập các số tự nhiên có 6 chữ số khác nhau là việc sắp xếp thứ tự 6 chữ số của tập A. Mỗi số là một hoán vị của 6 phần tử đó

⇒ Có P 6   =   6 !   =   6 . 5 . 4 . 3 . 2 . 1   =   720 số thỏa mãn

Vậy có 720 số thỏa mãn đầu bài.

17 tháng 2 2017

Đặt A = {1, 2, 3, 4, 5, 6}.

n(A) = 6.

có 720 số tự nhiên có 6 chữ số được lập từ các số trên

Việc lập các số chẵn là việc chọn các số có tận cùng bằng 2, 4 hoặc 6.

Gọi số cần lập là  a b c d e f

+ Chọn f : Có 3 cách chọn (2 ; 4 hoặc 6)

+ Chọn e : Có 5 cách chọn (khác f).

+ Chọn d : Có 4 cách chọn (khác e và f).

+ Chọn c : Có 3 cách chọn (khác d, e và f).

+ Chọn b : Có 2 cách chọn (khác c, d, e và f).

+ Chọn a : Có 1 cách chọn (Chữ số còn lại).

⇒ Theo quy tắc nhân: Có 3 . 5 . 4 . 3 . 2 . 1   =   360 (cách chọn).

Vậy có 360 số chẵn, còn lại 720   –   360   =   360 số lẻ.

14 tháng 1 2022

Gọi abc là stn có ba chữ số khác nhau cần tìm

TH1: c = {0} -> 1cc                                                       TH2: c = {2;4;6} -> 3cc

a \ {c} -> 6cc                                                                    a \ {0;c) -> 5cc

b \ {a;c} -> 5cc                                                                 b \ {a;c} -> 5cc

<=>(6*5)+(3*5*5)=105 số

13 tháng 8 2018

Số tự nhiên chẵn gồm 5 chữ số khác nhau và đúng hai chữ số lẻ có:

·       Chọn 2 chữ số lẻ có  cach; chọn 3 chữ số chẵn có  cách

·    Gọi số có 5 chữ số thỏa mãn đề bài là  .

·    Nếu a5 = 0 thì có 4! Cách chọn  .

·       Nếu a5 0 thì có 2 cách chọn  a5 từ 3 số chẵn đã chọn; khi đó có 3 cách chọn a1 ; 3 cách chọn a2 ; 2 cách chọn a3 và 1 cách chọn a1 .

·       Theo quy tắc cộng và nhân có 10.10.(1.4!+2.3.3.2.1)=6000 số

Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ đứng cạnh nhau có  số.

Suy ra có 6000-3120=2880 số cần tìm.

Chọn D.

18 tháng 10 2021

Gọi số tự nhiên cần tìm có dạng \(\overline{abcde}\)

Do a chỉ thuộc {1;2} nên ta chia 2 trường hợp

Trường hợp a=2(b<5):

 b có 5 cách chọn

 c có 5 cách chọn

 d có 4 cách chọn

 e có 3 cách chọn

Do đó với trường hợp a=2 ta có: 5.5.4.3=300(cách)

Trường hợp a=1:

 b có 6 cách chọn

 c có 5 cách chọn

 d có 4 cách chọn

 e có 3 cách chọn

Do đó trường hợp a=1 có 6.5.4.3=360(cách)

Từ đó để lập được các số tự nhiên thõa đề có: 300+360=660(cách)

Bạn có thể kiểm tra kỹ lại, trong quá trình làm có thể có sai xót về số nhưng hướng làm thì ổn rồi

giải giúp mình mấy bài này với từ các chữ số 1,2,4,5,6,7,8,9(không có số 3 nhé)1. có thể lập được bao nhiêu số tn có 6 chữ số khác nhau2. lập được bao nhiêu số có 6 chữ số và các chữ số đều chẵn3.có 7 chữ số trong đó các chữ số các đều chữ số đứng giữa là giống nhau4.có 5 chữ số khác nhau trong đó chữ số đầu tiên và chữ số cuối cùng là lẻ5.có 5 chữ số khác nhau trong...
Đọc tiếp

giải giúp mình mấy bài này với

từ các chữ số 1,2,4,5,6,7,8,9(không có số 3 nhé)

1. có thể lập được bao nhiêu số tn có 6 chữ số khác nhau

2. lập được bao nhiêu số có 6 chữ số và các chữ số đều chẵn

3.có 7 chữ số trong đó các chữ số các đều chữ số đứng giữa là giống nhau

4.có 5 chữ số khác nhau trong đó chữ số đầu tiên và chữ số cuối cùng là lẻ

5.có 5 chữ số khác nhau trong đó tổng của chữ số đầu tiên và chữ số cuối cùng chia hết cho 10

6.có 5 chứ số trong đó 2 chữ số kề nhau phải khác nhau

7. có 7 chữ số khác nhau trong đó chữ số đầu là lẻ và số đó chia hết cho 2

8. ------------------------------------------------------------------và chữ số cuối chia hết cho 3

9.số tự nhiên chẵn có 7 chữ số khác nhau sao cho chữ số chính giữa là chữ số chẵn

3
31 tháng 10 2016

gọi số cần tìm là abcdef( có gạch trên đầu b nhé)

với đk a#0 abcdef khác nhau

1; a có 8 cách chọn

b có 7 cách chọn

c có 6 cách chọn

d có 5 cách chọn

e có có 4 cách chọn

f có 3 cách chọn

=> có 20160 số tmycbt

31 tháng 10 2016

gọi số cần tìm là abcdef (abcdef chẵn a#0)

a,b,c,d,e,f đều có 4 cách chọn

=> 46 =4096 số tmycbt

 

12 tháng 10 2021

Số tự nhiên có 6 chữ số có dạng: \(\overline{abcdef}\)

f có 3 cách chọn.

a có 5 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

e có 1 cách chọn.

Vậy lập được \(3.5.4.3.2=360\) số tự nhiên thỏa mãn yêu cầu.