K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2022

Gọi abc là stn có ba chữ số khác nhau cần tìm

TH1: c = {0} -> 1cc                                                       TH2: c = {2;4;6} -> 3cc

a \ {c} -> 6cc                                                                    a \ {0;c) -> 5cc

b \ {a;c} -> 5cc                                                                 b \ {a;c} -> 5cc

<=>(6*5)+(3*5*5)=105 số

29 tháng 6 2017

Chọn D

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 

a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 3 cách xếp sao cho ba chữ số chẵn đứng liền nhau là 

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b;c})

Suy ra, số các số tự nhiên thỏa đề ra là 

13 tháng 8 2019

Chọn A

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng  a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là

(để ý: có 2 cách xếp 3 chữ số chẵn thỏa đề {a,b,c}, {c,d,e})

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng   0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau, hai chữ số lẻ đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là  {b,c}).

Suy ra, số các số tự nhiên thỏa đề ra là 

26 tháng 9 2023

KO PHẢI  PHẢI LÀ CHỮ SỐ 0,1,5,7,8 MỚI ĐÚNG

 

22 tháng 7 2019

Chọn C

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng   a b c d e ¯  (a có thể bằng 0), có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là  

(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {a,c,e}).

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau thỏa đề có dạng  0 b c d e ¯ , có đúng 3 chữ số chẵn và 2 chữ số lẻ, đồng thời ba chữ số chẵn và hai chữ số lẻ đứng xen kẽ là 

(để ý: có 1 cách xếp 3 chữ số chẵn thỏa đề {0,c,e}).

Suy ra, số các số tự nhiên thỏa đề ra là 

15 tháng 8 2021

Nguyễn Việt Lâm 

15 tháng 8 2021

Số cần tìm có dạng \(\overline{abcd}\left(a,b,c,d\in\left\{0;3;4;5;6;7\right\}\right)\)

TH1: \(d=0\)

a có 5 cách chọn

b có 4 cách chọn

c có 3 cách chọn

\(\Rightarrow\) Có \(3.4.5=60\) cách lập.

TH2: \(d\ne0\)

d có 2 cách chọn

a có 4 cách chọn

b có 4 cách chọn

c có 3 cách chọn

\(\Rightarrow\) Có \(2.3.4.4=96\) cách lập.

Vậy có \(96+60=156\) cách lập.

7 tháng 9 2017

Chọn A

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}.

Ta có,

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng a b c d e ¯  (a có thể bằng 0) là .

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  0 b c d e ¯  

Suy ra, số các số tự nhiên thỏa đề ra là .

Ý tưởng phát triển câu 39: thêm ràng buộc về thứ tự sắp xếp cho số tự nhiên lập được.

12 tháng 12 2018

Đáp án là A.

Gọi số cần lập có dạng:   a 1 a 2 a 3 a 4 a 5

          Chọn 2 số lẻ thuộc nhóm {1 ;3 ;5 ;7}  ⇒ C 4 2

          Chọn 3 số chẳn trong nhóm {0;2;4;6} ⇒ C 4 3

          Hoán vị 2 nhóm trên có 5! cách

          * Các số có số a1 = 0

          Chọn 2 số lẻ thuộc nhóm {1 ;3 ;5 ;7}  ⇒ C 4 2

          Chọn 2 số chẳn trong nhóm {0;2;4;6}  ⇒ C 3 2

          Hoán vị 2 nhóm trên có 4! cách

          Vậy các số cần tìm: C 4 2 . C 4 3 . 5 !   -   C 4 2 . C 3 2 . 4 !   =   2448  số

31 tháng 8 2017

Đáp án B

Phương pháp: Gọi số tự nhiên có ba chữ số cần tìm là a b c   ( a ≠ 0 ) , tìm số cách chọn cho các chữ số a, b,c sau đó áp dụng quy tắc nhân.

Cách giải: Gọi số tự nhiên có ba chữ số cần tìm là  a b c   ( a ≠ 0 )

Có 4 cách chọn c.

Có 6 cách chọn a.

Có 7 cách chọn b.

Vậy có 4.6.7 = 168 số.

Chú ý và sai lầm: Các chữ số a, b, c không yêu cầu khác nhau.

14 tháng 12 2018

Chọn B.

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}.

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  a b c d e ¯  (a có thể bằng 0), đồng thời hai chữ số lẻ đứng liền nhau là 

(để ý: có 4 cách xếp sao cho hai chữ số lẻ đứng liền nhau là 

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 0 b c d e ¯ , đồng thời hai chữ số lẻ đứng liền nhau là 

(để ý: có 3 cách xếp sao cho hai chữ số lẻ đứng liền nhau là 

Suy ra, số các số tự nhiên thỏa đề ra là 

Giúp em giải mấy bài vs ạ Bài 6:Từ các số 1,2,3,4,5,6có thể lập được bao nhiêu số tự nhiên thỏaa)Là số lẽ có 4 chữsốb)bé hơn 1000c)Gồm 6 chữ số khác nhaud)Gồm 3 chữ số khác nhau Bài 7:Có thể lập được bao nhiêu số tự nhiên thỏaa) Gồm 4 chữ số khác nhau?b) Gồm 3chữ số khác nhau nhưng số tạo thành là các số chẵn?c)Là số lẽ,lớn hơn 3000 và có 4 chữ số khác nhauc) Gồm 5chữ số...
Đọc tiếp

Giúp em giải mấy bài vs ạ

 

Bài 6:Từ các số 1,2,3,4,5,6có thể lập được bao nhiêu số tự nhiên thỏa

a)Là số lẽ có 4 chữsố

b)bé hơn 1000

c)Gồm 6 chữ số khác nhau

d)Gồm 3 chữ số khác nhau 

Bài 7:Có thể lập được bao nhiêu số tự nhiên thỏa

a) Gồm 4 chữ số khác nhau?

b) Gồm 3chữ số khác nhau nhưng số tạo thành là các số chẵn?

c)Là số lẽ,lớn hơn 3000 và có 4 chữ số khác nhau

c) Gồm 5chữ số khác nhau nhưng số tạo thành là số chia hết cho 5

Bài 8:Có 10 quyển sách khác nhau. Có bao nhiêu cách tặng cho 3 học sinh, mỗi học sinh 1 quyển

Bài 9:Có 7 bì thư khác nhau và 5 con tem khác nhau. Có bao nhiêu cách dán 3 con tem vào 3 bì thư

Bài 10:Cho 10 điểm nằm trên 1 đường tròn.

a) Có bao nhiêu vec tơ khác 0 mà điểm đầu và điểm cuối lấy từ các điểm đã cho.

b) Có bao nhiêu tam giác có đỉnh là một trong các điểm đã cho.

c) Nối 10 điểm đó lại thành 1 đa giác lồi. Hỏi đa giác đó có bao nhiêu đường chéo.

Bài 11:Cho 2 đường thẳng a, b song song. Trên a lấy 5 điểm phân biệt, trên b lấy 6 điểm phân biệt.

a) Hỏi có bao nhiêu tam giác được thành lập từ các điểm trên?b) Hỏi có bao nhiêu hình thang được thành lập từ các điểm trên?

Bài 12:Một lớp học có 40 học sinh,cần cử ra 1 ban cán sự lớp gồm 1 lớp trưởng,1 lớp phó và 3 ủy viên.Hỏi có bao nhiêu cách lập 1 ban cán sự biết rằng các hs có khả năng chọn như nhau.

Bài 13:Có 4 nam, 4 nữ. Có bao nhiêu cách xếp các bạn vào một bàn dài có 8 ghế sao cho

a) Nam nữ xen kẽ

b) Nam ngồi cạnh nhau

 

1
6 tháng 12 2021

Tách ra.